Influence of magnetic field on the properties of paraffin based fuel for hybrid rocket engines

1Vergun, LYu., 1Chernyak, VYa., 2Orlovskaya, SG, 1Nedibalyuk, OA, 1Solomenko, ОV, 3Popov, SA
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2I.I. Mechnikov National University of Odessa, Odessa, Ukraine
3Taras Shevchenko National University of Kyiv, Institute of Geology, Kyiv, Ukraine
Kosm. nauka tehnol. 2016, 22 ;(3):16-24
https://doi.org/10.15407/knit2016.03.016
Section: Space Energy, Power and Propulsion
Publication Language: Ukrainian
Abstract: 
We consider the question of increasing of paraffin based fuel regression rate. The hypothesis about dependence of these
values from the change of chains conformation on surface of melt layer is advanced and use of magnetic field at the preparation of fuel charge is proposed. We conclude that a static magnetic field allows to stabilization of transfer droplets from paraffinic melt to combustions zone.
Keywords: magnetic field, paraffin based fuel, regression rate coefficient
References: 
1. Aktan O.Yu., Zabashta Yu.F., Chernyak V.Ya., et al. Physical foundation for the construction of paraffin-based hybrid rocket engines. Kinetics of melting and combustion. Kosm. nauka tehnol., 17 (3), 28—33 (2011) [in Ukrainian].
https://doi.org/10.15407/knit2011.03.028
2. Assovskiy I. G. Physics of Combustion and Interior Ballistics [Fizika gorenija i vnutrennjaja ballistika], 348 p. (Nauka, Moscow, 2005) [in Russian].
3. Asheko A. A. Electric dipoles molecules saturated openchain hydrocarbons in the gaseous phase. Visnyk Kharkiv. un-tu. Ser. fizychna: Jadra, chastynky, polja, N421, 114—117 (1998) [in Russian].
4. Babenko V. V., Turik V. N. Breadboard model of vortical structures at flow in the vortical chamber. Applied hydromechanics10 (3), 3—9 (2008) [in Russian].
5. Bahman N. I., Beljaev A. F. The burning of heterogeneous condensed systems, 222 p. (Nauka, Moscow, 1967) [in Russian].
6. Bulavin L.A., Aktan O.Yu., Zabashta Yu.F. Measurement of the Shear Modulus in Melting. Industrial Laboratory78(4), 56—59 (2012) [in Russian]
7. Bulavin L. A., Aktan E. Yu, Zabashta Yu. F. The Equation of State of Polymer Crystals. Ukr. J. Phys., 46 (11), 1158-1162 (2001) [in Ukrainian]..
8. Bullough R. K., Caudrey P. J. (Eds.) Solitons [Solitony], Transl. from Eng., 408 p. (Mir, Moscow, 1983) [in Russian].
9. Warnatz J., Maas U., Dibble R. W. Combustion. Physical and chemical fundamentals, modeling and simulations, experiments, pollutant formation, Transl. from Eng., 352 p. (Fizmatlit, Moscow, 2006) [in Russian].
10. Vergun L. Yu., Chernyak V. Ya., Nedibalyuk O. A., et al. The conformation changes of the solid paraffin’s structure during initial stage of its burning. Kosm. nauka tehnol., 19 (5), 63—69 (2013) [in Ukrainian].
11. Loskutova Ju. V., Prozorova I. V., Judina N. V. Abnormalities of the rheological properties of oils in a magnetic field. Automation and information support of processes in the oil industry: Proceedings, Ed.by A. K. Khor'kov, 183—188 (Izd-vo Tom. un-ta, Tomsk, 2000) [in Russian].
12. Loskutova Ju. V., Judina N. V., Pisareva S. I., et al. The rheological properties of high-viscosity oils and paraffin in a magnetic field. Mater. IV Int. confer. «Chemistry of Oil and Gas», Vol. 1, 474—478 (Tomsk, 2000) [in Russian].
13. Talantov A. V. Fundamentals of the theory of combustion, 249 p. (Rotaprint, Kazan', 1975) [in Russian].
14. Frenkel' Ja. I. Kinetic Theory of Liquids, 592 p. (Nauka, Leningrad, 1975) [in Russian].
15. Shahparonov M. I., Asheko A. A., Usacheva T. M. Kinetics dielectrically observed processes of thermal motion in liquid alkanes. Zhurn. fiz. himii, 58 (11), 2746—2749 (1984) [in Russian].
16. Bulavin L .A., Aktan O.Yu. , Zabashta Yu. F. Vacancies in folded polymer crystals. Polymer Sci. Ser. A, 44 (9), 980—985 (2002).
17. Bulavin L. A., Aktan O. Yu., Lazarenko M. M. The mechanism of melting of lamellar crystals with the branched chains. Ukr. J. Phys., N 9, 952—957 (2005).
18. Bulavin L. A., Aktan O. Yu., Zabashta Yu. F. The statistical theory of melting of folded crystals containing vacancies.Polymer Sci. Ser. A, 45 (10), 1007—1010 (2003).
19. Bulavin L. A., Aktan O. Yu., Zabashta Yu. F. Formation of a mesomorphic phase upon melting of folded crystals containing vacancies. Polymer Sci. Ser. B, 47 (3-4), 109—113 (2005).
20. de Gennes P.-G. Scaling Concepts in Polymer Physics, 368 p. (Cornell Univ. Press, Oxford, 1979).
21. Etkin V. Thermokinetics (Synthesis of Heat Engineering Theoretical Grounds), 334 p. (Haifa, 2010).
22. Karabeyoglu A., Zilliac G., Cantwell B. J., et al. Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels. J. Propulsion and Power, 20 (6), 1037—1045 (2004).
https://doi.org/10.2514/1.3340
23. Nedybaliuk O. A., Chernyak V. Ya., Martish E. V., et al. Plasma assisted combustion of paraffin mixtures. Probls Atomic Sci. and Technology, 1 (83), 219—221 (2013).
24. Nedybaliuk O. A., Solomenko O. V., Chernyak V. Ya., et al. Peculiarities of Plasma Assisted Stearine Combustion. Phys. Rev. and Res. International, 3 (4), 522—529 (2013).
25. Sutton G., Biblaz O. Rocket Propulsion Elements, 7th Edition, 751 p. (John-Wiley & Sons, New York, 2001).
26. Watanabe K., et al. Cryogen-free hybrid magnet for magnetic levitation. Phys. C, N 386, 485—489 (2003).
https://doi.org/10.1016/s0921-4534(02)02232-3
27. Wunderlich B., Möller M., Grebowicz J., et al. Conformational motion and disorder in low and high molecular mass crystals, 121 p. (Springer-Verlag, Berlin, Heidelberg, 1988).
https://doi.org/10.1007/BFb0008607