Determination of a force transmitted by a plume of an ion thruster to an orbital object

1Alpatov, AP, 2Zakrzhevskii, AE, 3Merino, M, 4Fokov, AA, 5Khoroshylov, SV, 3Cichocki, F
1Institute of Technical Mechanics of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Universidad Carlos III de Madrid, Leganés, Spain
4Institute of Technical Mechanics of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
5Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
Space Sci.&Technol. 2016, 22 ;(1):52-63
https://doi.org/10.15407/knit2016.01.052
Publication Language: Russian
Abstract: 
An approach to determine the force transmitted to an orbital object by the plume of the ion thruster using its central projection on a selected plane has been proposed. A photo camera has been used to obtain the image of the object central projection. We developed the algorithms, which allow 1) to calculate the transmitted force, including determination of the contour of the object projection, and 2) to calculate, using this contour, the ion beam elements, which irradiate the surface.
Keywords: orbital object, the central projection of the transmitted power, the torch and the electric motor
References: 
1. Bombardelli C., Herrera J., Iturri A., Pelaez J. Space debris removal with bare electrodynamic tethers. Proceedings of the 20th AAS/AIAA Spaceflight Mechanics Meeting
(San Diego, CA, 2010).
2. Bombardelli C., Merino M., Ahedo E., et al. Ariadna call for ideas: Active removal of space debris ion beam shepherd for contactless debris removal. Technical report, 90 p. (2011).
3. Bombardelli C., Peláez J. Ion Beam Shepherd for Contactless Space Debris Removal. JGCD. 34(3), 916—920 (2011).
https://doi.org/10.2514/1.51832
4. Bombardelli C.,Urrutxua H., Merino M., et al. Relative dynamics and control of an ion beam shepherd satellite.Spaceflight mechanics, 143, 2145—2158 (2012). 
5. Bondarenko S., Lyagushin S., Shifrin G. Prospects of using lasers and military space technology for space debris removal. Second European Conference on Space Debris, 393, P. 703 (1997). 
6. Cichocki F., Merino M., Ahedo E. Collisionless Plasma thruster plume expansion model. 50th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference. (2014). 
7. De Berg M., Van Kreveld M., Overmars M., Schwarzkopf O. Computational geometry: Algorithms and applications, 360 p. (Springer, N.Y., 2000). 
https://doi.org/10.1007/978-3-662-04245-8
8. Duckham M., Kulik L., Worboys M., Galton A. Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognition, 41(10), 2965—3270 (2008). 
https://doi.org/10.1016/j.patcog.2008.03.023
9. Frey P. J., George P. L. Mesh generation application to finite elements, 814 p. (HERMES Science Europe Ltd, 2000). 
10. Hormann K., Agathos A.The point in polygon problem for arbitrary polygons. Comput. Geom. Theory Appl. 20, 131—144 (2001). 
https://doi.org/10.1016/S0925-7721(01)00012-8
11. Liou J.-C., Anilkumar A. K., Bastida B., et al. Stabilit of the Future Leo Environment – an IADC Comparison Study. Proc. “6th European Conference on Space Debris”  Darmstadt, Germany, 22–25 April 2013 (ESA SP-723, August 2013) (2013). 
12. Phipps C. R., Reilly J. P. ORION: Clearing Near-Earth Space Debris in Two Years Using a 30-kW Repetitively- Pulsed Laser. SPIE Proceedings of the International Society for  Optical Engineering, 728—731 (1997). 
13. Takeichi N. Practical Operation Strategy for Deorbit of an Electrodynamic Tethered System. J. Spacecraft and Rockets, 43(6), 1283–1288 (2006)
https://doi.org/10.2514/1.19635