Construction and validation of the regional model of ionospheric total electron content using dual-frequency carrier-phase observations of networks of permanent GNSS-stations

1Zhalilo, AA, 2Yemets, AI, 3Bessonov, EA, 4Ditskiy, IV, 5Zanimonskiy, Ye.M
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine; Kharkіv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Kharkiv,Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Kharkіv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
4Kharkiv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Ukraine
5Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(6):28–48
https://doi.org/10.15407/knit2015.06.028
Publication Language: Russian
Abstract: 

The results of construction, optimization and validation of the regional two-dimensional model of total electron content (TEC) of ionosphere are presented. Modeling is based on the use of high-precision non-ambiguous carrier phase «geometryfree» GNSS observations of permanent reference station networks and provided by the of joint LSM-estimation of model parameters and unknown phase biases. It is shown that the proposed model allows up to 65...80 % more accurately executing of absolute and differential positioning in comparison with the known GIM IONEX (IGS) model.

Keywords: Global Navigation Satellite Systems (GNSS), modeling, observations, permanent reference station, total electron content (TEC) of ionosphere.
References: 

1. Hofmann-Wellenhof B., Lichtenegger H., and Collins J. Global Positioning System. Theory and Practice: Transl. from Eng., 380 p. (Nauk.dumka, Kyiv, 1995) [in Ukrainian].

2. Zhalilo A. A., Zhelanov A. A., Bessonov E. A., Dickij I. V. Experimental testing of software and mathematical tools of observation processing network of ground of permanent GNSS reference stations in Ukraine for the evaluation and modeling of total electron content of the ionosphere in the “Ionosat-Micro” international project, Space Project “Ionosat-Micro”, Ed. by S.A.Zasuha, O.P.Fedorov, P. 200—209 (Academperiodika, Kyiv, 2013) [in Russian].

3. Zhalilo A. A., Zhelanov A. A., Shelkovenkov D. A. et al. Joint development and current research of the KhNURE and MAO NAS of Ukraine in the field of GNSS precise positioning. Proc.of the IVth International Radio Electronic Forum "Applied radio electronics. The state and prospects of development”, Vol.1, pt. 2, 18—20 (Kharkov, 2011) [in Russian].

4. Space Project “Ionosat-Micro”, Ed. by S.A.Zasuha, O.P.Fedorov, 218 p. (Academperiodika, Kyiv, 2013) [in Russian].

5. Stvorennja systemy zboru, obrobky ta analizu nazemnyh i bortovyh kosmichnyh GPS/GLONASS sposterezhen' dlja monitoryngu, doslidzhen' j modeljuvannja povnogo elektronnogo vmistu ionosfery u ramkah mizhnarodnogo proektu «Ionosat-Mikro». Etap 1. Eksperymental'ne vidpracjuvannja aparatno-programnyh zasobiv zboru, obrobky ta analizu sposterezhen' merezhi nazemnyh permanentnyh referencnyh GNSS stancij Ukrai'ny dlja ocinky i modeljuvannja skladovyh ionosfernoi' zatrymky: nauk.-tehn. zvit. GAO NAN Ukrai'ny. No. DR 0113U002710, 69 p. (Kyiv, 2013) [in Ukrainian].

6. Stvorennja systemy zboru, obrobky ta analizu nazemnyh i bortovyh kosmichnyh GPS/GLONASS sposterezhen' dlja monitoryngu, doslidzhen' j modeljuvannja povnogo elektronnogo vmistu ionosfery u ramkah mizhnarodnogo proektu «Ionosat-Mikro». Etap 2. Optymizacija algorytmiv ocinky ta modeljuvannja ionosfernyh i troposfernyh zatrymok z vykorystannjam sposterezhen' merezh permanentnyh GNSS stancij: nauk.-tehn. zvit. GAO NAN Ukrai'ny.  No. DR 0112U001418, 46 p. (Kyiv, 2014) [in Ukrainian].

7. Khoda O. Klio software for the estimation of the ionospheric parameters. Space science and technology, 5 (5/6), 25—32 (1999) [in Russian].
https://doi.org/10.15407/knit1999.05.025

8. Alcantarilla I., Zarraoa N., Caro J. On EGNOS and WAAS Performance. Proc. ION 61st Annual meeting The MITRE Corporation & Draper Laboratory, 774—782 (Cambridge, MA, 2005).

9. Bessonov E., Ditskiy I., Zhelanov A., Zhalilo A. Mapping the regional ionospheric TEC using observations of GNSS stations of Ukraine. TCSET’2014: thesis. P. 792 (Lviv, 2014).

10. Bisnath S., Gao Y. Precise point positioning: a powerful technique with a promising future. GPS World, 43—50 (2009).

11. Calle Calle J. D., Rodríguez Pérez I., Cueto Santamaría M., et al. Using LEO GNSS data for precise calibration of space HW biases. Proc. 25th Int. Technical meeting of the satellite division of the Institute of Navigation, 2249—2258 (Nashville TN, 2012).

12. Colombo Oscar L. Resolving carrier-phase ambiguities on the fly, at more than 100 km from nearest reference site, With The help of ionospheric tomography. ION GPS 1999: Proc. 12th Int. technical meeting of the satellite division of the Institute of Navigation, 1635—1642 (Nashville, TN, 1999).

13. Fedrizzi M., Langley R. B., Komjathy A., et al. The low-latitude ionosphere: Monitoring its behaviour with GPS. Proc. 14th Int. Technical meeting of the satellite division of the Institute of Navigation (ION GPS 2001), 2468—2475 (Salt Lake City, UT., 2001).

14. Hernandez-Pajares M., Juan J. M., Sanz J., Colombo O. L. Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution, at scales of 400—1000 km and with high geomagnetic activity. Geophys. Res. Lett. 27(13), 2009—2012 (2000).
https://doi.org/10.1029/1999GL011239

15. Klobuchar J. A. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Trans. Aerospace and Electron. Syst. AES-23, 325—331.
https://doi.org/10.1109/TAES.1987.310829

16. Komjathy A. Global ionospheric total electron content mapping using the global positioning system: Ph. D. dissertation, Department of Geodesy and Geomatics Engineering Technical Report N 188. University of New Brunswick, 248 p. (Fredericton, N.B., Canada, 1997).

17. Leick A. GPS Satellite Surveying: 3-rd ed. 464 p. (New York: John Wiley, 2003).

18. Liu J., Chen R., Kuusniemi H., et al. Mapping the regional ionospheric TEC using a spherical cap harmonic model and IGS products in high latitudes and the arctic region. Proc. IAIN 2009 World Congress (Stockholm, Sweden, 2009). Mode of access.

19. Liu J., Chen R., Kuusniemi H., et al. A Preliminary study on mapping the regional ionospheric TEC using a spherical cap harmonic model in high latitudes and the arctic region. J. Global Posit. System, 9(1), 22—32 (2010).
https://doi.org/10.5081/jgps.9.1.22

20. Rizos C. Principles and practice of GPS surveying. School of engineering. 555 p. (The University of New South Wales, Australia, 1999).

21. Schaer S. Mapping and predicting the Earth’s ionosphere using the global positioning system: Ph. D. dissertation. 228 p. (Astronomisches Institut der Universität Bern, 1999) .

22. Sparks L., Komjathy A., Mannucci A. J. Estimating SBAS ionospheric delays without grids: The conical domain approach. ION NTM 2004: Proc. National technical meeting of the Institute of Navigation, 530—541 (San Diego, CA, 2004).