On the feasible development of gimballess control systems for launch vehicles using GPS satellite navigation equipment

1Degtyarev, АV, 2Degtyarev, MA, 1Davydenko, SA, 2Makarov, AL, 3Snegirev, MG, 2Sirenko, VN, 3Tikhonov, VL, 1Shekhovtsov, VS
1Yangel Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
3Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(6):03–12
https://doi.org/10.15407/knit2015.06.003
Publication Language: Russian
Abstract: 

We present results on the feasibility of developing the Gimballess Navigation Inertial Satellite Control System (NISCS/ GPS SNE) on the basis of MEMMS-sensors and GPS Satellite Navigation Equipment (GPS SNE) for commercial Launch Vehicles (LV) of light and middle classes. We note that this NISCS/GPS SNE is of less cost, less mass, less dimensions, and energy capacity. Feasibility of developing the NISCS/ GPS SNE is based on the analysis of solution of two tasks: a) statistic model ling of LV disturbed motion, which takes into account the errors of NISCS/GPS SNE operation, and b) establishment of the NISCS/GPS SNE rational structure and instruments, which takes the modeling and experimental development results into account. We demonstrate that NISCS/ GPS SNE use will be helping to increase competitiveness of Launch Vehicle of a reviewed class due to the reduction of LV launch cost and increase of Payload mass. 

Keywords: GPS satellite navigation equipment, hybrid Control System, MEMMS gyroscopes and accelerometers, unmanned navigation system, weakly connected system.
References: 

1. Degtyarev A.V. Scientific and methodological bases of missile systems modernization. Doctor’s thesis. 245 p. (Yuzhnoye Design Office, Dnepropetrovsk, 2012) [in Russian].

2. Degtyarev A. V., Kushnarev A. P., Makarov A. L. et al. Analiz vozmozhnosti razrabotki v GP «KB «Juzhnoe» integrirovannoj inercial'no-sputnikovoj navigacionnoj sistemy s chuvstvitel'nymi jelementami, ispol'zujushhimi razlichnye fizicheskie principy, v tom chisle i vypolnennye po MJeMS-tehnologii, dlja perspektivnyh obrazcov raketno-kosmicheskoj tehniki: (Tehn. otchet). No. 21.17966.159 OT. 243 p. (Yuzhnoye Design Office, Dnepropetrovsk, 2015) [in Russian].

3. Kirichenko A. F., Ignat'ev V. G., Salenko D. V., Stadnik N. V. RV "Cyclone-4". Navigation algorithms. NTO AARG. 371111. 029 90 103. (NPP «Hartron-Arkos», Kharkov, 2011) [in Russian].

4. Kirichenko A. F., Luk'janovich A. E., Ostapenko V. M. RV "Mayak-22". Navigation system, guidance and stabilization. Jeskiznyj proekt. Ch. 3. (NPP «Hartron-Arkos», Kharkov, 2013) [in Russian].

5. Sirenko V. N. , Snegirev M. G. Issledovanie vozmozhnosti postroenija SU pri ispol'zovanii KKP s povyshennymi pogreshnostjami i informacii pod AP-SNS NTO, 53 p. (Yuzhnoye Design Office, Dnepropetrovsk, 2015) [in Russian].

6. Jeffrey A. G. Characterization, control and compensation of MEMS rate and rate-integrating gyroscopes: A doctor of philosophy (Electrical Engineering) dissertation. 182 p. (The University of Michigan, 2012).

7. Guochang Xu. GPS. Theory, algorithms and applications, 351 p. (Springer-Verlag, Heidelberg, 2007).

8. Quinchia A. G., Falco G., Falletti E., et al. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors. 13, 9549—9588 (2013).
https://doi.org/10.3390/s130809549

9. Sveinsson A. INS/GPS error analysis and integration. 114 p. (Reyjavik University, 2012).