The astrocosmic databases for multi-wavelength and cosmological properties of extragalactic sources
1Vavilova, IB, 2Ivashchenko, GYu., 1Babyk, Yu.V, 3Sergienko, OM, 1Dobrycheva, DV, 1Torbaniuk, OO, 1Vasylenko, AA, 1Pulatova, NG 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2Astronomical Observatory of Kyiv Shevchenko National University, Kyiv, Ukraine; Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 3Astronomical Observatory of Ivan Franko National University of L'viv, L'viv, Ukraine |
Kosm. nauka tehnol. 2015, 21 ;(5):94–107 |
https://doi.org/10.15407/knit2015.05.094 |
Publication Language: Ukrainian |
Abstract: The article briefly describes the new specially-oriented Astro Space databases obtained with ground-based telescopes and space observatories. As a result, multi-wavelength spectral and physical properties of galaxies and galaxy clusters were analyzed in more details, particularly 1) to study the spectral properties of quasars and the distribution of matter in intergalactic scales using Lyman-alpha forest; 2) to study galaxies (including with active nuclei), especially for the formation of large-scale structures in the Universe and influence of the environment on the internal parameters of galaxies; 3) to estimate a visible and dark matter content in galaxy clusters and to test cosmological parameters and the evolution of matter in a wide range of age of the Universe. |
Keywords: active galaxy nuclei, cosmological models, galaxies, quasars, X-ray galaxy clusters |
1. Akylas A., Georgantopoulos I. XMM-Newton observations of Seyfert galaxies from the Palomar spectroscopic survey: the X-ray absorption distribution. Astron.and Astrophys. 500, 999 —1012 (2009).
https://doi.org/10.1051/0004-6361/200811371
2. Anderson L., Aubourg E., Bailey S., et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample. Mon.Notic.Roy.Astron.Soc. 427, 3435 (2012).
https://doi.org/10.1111/j.1365-2966.2012.22066.x
3. Babyk Iu. A distant Chandra galaxy cluster CL J1415.1+3612: constraint on evidence of the cool core phenomenon. Baltic Astron. 23, 93—102 (2014).
4. Babyk Iu., Del Popolo A. Correlations in relaxed clusters of galaxies. Baltic Astron. 23, 9—26 (2014).
5. Babyk Iu.V., Vavilova I.B. The distribution of baryon matter in the nearby X-ray galaxy clusters. Odessa Astron.Publs. 25, 119 —124 (2012).
6. Babyk Iu.V., Vavilova I.B. Comparison of optical and X-ray mass estimates of the Chandra Galaxy Clusters at z <0.1. Odessa Astron.Publs. 26(2), 175 —178 (2013).
7. Babyk Iu., Vavilova I. The Chandra X-ray galaxy clusters at z <1.4:constraints on the evolution of L X -T-M g relations. Astrophys.and Space Sci. 349(1), 415 —421 (2014).
https://doi.org/10.1007/s10509-013-1630-z
8. Babyk Iu., Vavilova I. The distant galaxy cluster XLSSJ022403.9-041328 on the L X -T X -M scaling relations using Chandra and XMM-Newton observations. Astrophys.and Space Sci. 353(2), 613 —619 (2014).
https://doi.org/10.1007/s10509-014-2057-x
9. Babyk Iu., Vavilova I., Del Popolo A. Chandra X-ray galaxy clusters at z <1.4: constraints on the inner slope of density profiles. Astron.Reports. 58(9), 587 —610 (2014).
https://doi.org/10.1134/S1063772914090017
10. Babyk Iu., Vavilova I., Del Popolo A. VizieR Online Data Catalog:Chandra X-Ray galaxy clusters at z <1.4. VizieR On-line Data Catalog: J/AZh/91/679.
11. Bennett C.L., Larson D., Weiland J.L., et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final maps and results. Astrophys.J. Suppl. Ser. 208(2) id.20, 54 p. (2013).
https://doi.org/10.1088/0067-0049/208/2/20
12. Beutler F., Blake C., Colless M., et al. The 6dF Galaxy Survey:baryon acoustic oscillations and the local Hubble constant. Mon.Notic.Roy.Astron.Soc. 416, P.3017 (2011).
https://doi.org/10.1111/j.1365-2966.2011.19250.x
13. Chesnok N.G. General properties of a sample of isolated galaxies containing active nucleus. Kosm. nauka tehnol., 16(5), 77 —88 (2010) [in Ukrainian].
https://doi.org/10.15407/knit2010.05.077
14. Chesnok N.G., Sergeev S.G., Vavilova I.B. Optical and X-ray variability of Seyfert galaxies NGC 5548,NGC 7469, NGC 3227, NGC 4051, NGC 4151, Mrk 509, Mrk 79, and Akn 564 and quasar 1E 0754. Kinematics and Physics of Celestial Bodies. 25(2), P.107 —113 (2009).
https://doi.org/10.3103/S0884591309020068
15. Conley A., Guy J., Sullivan M., et al. Supernova constraints and systematic uncertainties from the first three years of the Supernova Legacy Survey. Astrophys.J. Suppl.Ser. 192(1), 29 p. (2011).
https://doi.org/10.1088/0067-0049/192/1/1
16. Cusumano G., La Parola V., Segreto A., et al. The Palermo Swift-BAT hard X-ray catalogue. III.Results after 54 months of sky survey. Astron.and Astrophys. 524, id.A64, 37 p. (2010).
https://doi.org/10.1051/0004-6361/201015249
17. Dobrycheva D.V. The New Galaxy Sample from SDSS DR9 at 0.003 .z .0.1. Odessa Astron.Publs. 26,187 —188 (2013).
18. Dobrycheva D., Melnyk O.V., Vavilova I.B. Morphology and color indices of galaxies in Pairs: Criteria for the classification of galaxies. Astrophysics. 55(3), 293 —305 (2012).
https://doi.org/10.1007/s10511-012-9236-7
19. Dobrycheva D.V., Melnyk O.V., Vavilova I.B., Elyiv A.A. Environmental Properties of Galaxies at z <0.1 from the SDSS via the Voronoi Tessellation. Odessa Astron.Publs. 27, 26 —27 (2014).
20. Dobrycheva D.V., Melnyk O.V., Vavilova I.B., Elyiv A.A. Environmental density vs.colour indices of the low redshifts galaxies. Astrophysics. 58(2), 168 —180 (2015).
https://doi.org/10.1007/s10511-015-9373-x
21. Elyiv A., Melnyk O., Vavilova I. High-order 3D Voronoi tessellation for identifying isolated galaxies, pairs and triplets. Mon. Notic. Roy. Astron. Soc. 394(3), 1409 —1418 (2009).
https://doi.org/10.1111/j.1365-2966.2008.14150.x
22. Gallo L.C. Investigating the nature of narrow-line Seyfert 1 galaxies with high-energy spectral complexity. Mon. Notic. Roy. Astron. Soc. 368, 479 —486 (2006).
https://doi.org/10.1111/j.1365-2966.2006.10137.x
23. Hartley W.G., Conselice C.J., Mortlock A., et al. Galactic conformity and central/satellite quenching, from the satellite profiles of M* galaxies at 0.4 < z < 1.9 in the UKIDSS UDS . MNRAS. 451, is. 2, 1613-1636 (2015)..
https://doi.org/10.1093/mnras/stv972
24. Hinshaw G., Larson D., Komatsu E., et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Cosmological Parameter Results. Astrophys.J. Suppl.Ser. 208(2), id.19, 25 p. (2013).
https://doi.org/10.1088/0067-0049/208/2/19
25. Ivashchenko G., Sergijenko O., Torbaniuk O. Composite spectra of quasars with diferent UV spectral index. Mon. Notic. Roy. Astron. Soc. 437, 3343 —3361 (2014).
https://doi.org/10.1093/mnras/stt2137
26. Ivashchenko G., Vasylenko O. Cross-correalation function of SDSS DR7 I-type AGNs and WiggleZ galaxies. Kinematics and Physics of Celestial Bodies. 31(3), 1 —12 (2015).
https://doi.org/10.3103/S088459131501002X
27. Karachentseva V.E., Mitronova S.N., Melnyk O.V., Karachentsev I.D. Catalog of isolated galaxies selected from the 2MASS survey. Astrophys.Bull. 65(1), 1 —17 (2010).
https://doi.org/10.1134/S1990341310010013
28. Kovac K., Lilly S.J., Knobel C., et al. zCOSMOS 20k: satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z ~0.7. Mon. Notic. Roy. Astron. Soc. 438, 717 —738 (2014).
https://doi.org/10.1093/mnras/stt2241
29. Lewis A., Bridle S. Cosmological parameters from CMB and other data:A Monte Carlo approach. Phys.Rev. D. 66, 103511 (2002).
https://doi.org/10.1103/PhysRevD.66.103511
30. Maughan B.J., Ellis S.C., Jones L.R., et al. XMM-Newton Observes Cl J0152.7-1357: A Massive Galaxy Cluster Forming at Merger Crossroads at z =0.83. Astrophys.J. 640(1), 219 —227 (2006).
https://doi.org/10.1086/499939
31. Melnyk O.V., Elyiv A.A., Vavilova I.B. The structure of the Local Supercluster of galaxies detected by three-dimensional Voronoi 's tessellation method. Kinematika i Fizika Nebesnykh Tel. 22(4), 283 —296 (2006).
32. Novosyadlyj B., Sergijenko O., Durrer R., Pelykh V. Constraining the dynamical dark energy parameters: Planck-2013 vs WMAP9. J.Cosmology and Astroparticle Phys. 5(05), article id.030 (2014).
https://doi.org/10.1088/1475-7516/2014/05/030
33. Padmanabhan N., Xu X., Eisenstein D.J., et al. A 2 per cent distance to z =0.35 by reconstructing baryon acoustic oscillations. I.Methods and application to the Sloan Digital Sky Survey. Mon. Notic. Roy. Astron. Soc. 427, 2132 (2012).
https://doi.org/10.1111/j.1365-2966.2012.21888.x
34. Parkinson D., Riemer-Sorensen S., Blake C., et al. The WiggleZ Dark Energy Survey: Final data release and cosmological results. Phys.Rev.D. 86, 103518 (2012).
https://doi.org/10.1103/PhysRevD.86.103518
35. Peng Y.-J., Lilly S.J., Kovac K., et al. Mass and Environment as Drivers of Galaxy Evolution in SDSS and zCOSMOS and the Origin of the Schechter Function. Astrophys.J. 721, 193 —221 (2010).
https://doi.org/10.1088/0004-637X/721/1/193
36. Planck collaboration, Planck 2013 results. I.Overview of products and scientific results. Astron.and Astrophys. 571, A1 (2014).
https://doi.org/10.1051/0004-6361/201321529
37. Planck collaboration, Planck 2013 results. XV. CMB power spectra and likelihood. Astron.and Astrophys. 571, A15 (2014).
https://doi.org/10.1051/0004-6361/201321573
38. Planck collaboration, Planck 2013 results. XVI. Cosmological parameters. Astron.and Astrophys. 571, A16 (2014).
https://doi.org/10.1051/0004-6361/201321591
39. Pulatova N.G., Vavilova I.B., Sawangwit U., et al. The 2MIG isolated AGNs.I.General and multiwavelength properties of AGNs and host galaxies in the northern sky. Mon. Notic. Roy. Astron. Soc. 447(3), 2209 —2223 (2015).
https://doi.org/10.1093/mnras/stu2556
40. Riess A.G., Macri L., Casertano S. A 3 % Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys.J. 730, P.119 (2011).
https://doi.org/10.1088/0004-637X/730/2/119
41. Sergijenko O., Novosyadlyj B. Sound speed of scalar field dark energy: Weak effects and large uncertainties. Phys.Rev.D. 91, 083007 (2015).
https://doi.org/10.1103/PhysRevD.91.083007
42. Suzuki N., Rubin D., Lidman C., et al. The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z >1 and Building an Early-type-hosted Supernova Sample. Astrophys.J. 746, P.85 (2012).
https://doi.org/10.1088/0004-637X/746/1/85
43. Tinker J .L., Leauthaud A., Bundy K., et al. Evolution of the Stellar-to-dark Matter Relation: Separating Starforming and Passive Galaxies from z =1 to 0. Astrophys. J. 778, article id.93, 18 p. (2013).
https://doi.org/10.1088/0004-637X/778/2/93
44. Torbaniuk O. A quasar sample for Ly α -forest studies from SDSS DR10. Adv. Astron. and Space Phys. 5(12) (2015).
45. Torbaniuk O., Ivashchenko G. Dependence between some spectral and physical characteristics of quasars. WDS '14: Proc.of Contributed Papers — Physics / Eds. J.I.B.Safrankova, J.Pavlu. P.42 —47 (Matfyzpress, Prague, 2014).
46. Torbaniuk O., Ivashchenko G. Dependence of equivalent width of quasar emission lines on UV-optical spectral index. Multiwavelength AGN Surveys and Studies: Proc.IAU Symp. 304, 282 —283 (2014).
https://doi.org/10.1017/S1743921314004086
47. Ueda Y., Ishisaki Y., Takahashi T., et al. The ASCA Medium Sensitivity Survey (The GIS Catalog Project): Source Catalog II. Astrophys.J.Supl.Ser. 161(2),185 —223 (2005).
https://doi.org/10.1086/468187
48. Vasylenko A., Zhdanov V., Fedorova O. X-Ray Spectral Parameters for a Sample of 95 Active Galactic Nuclei. Astrophysics and Space Science, 360, id.37, 16 p. (2015).
https://doi.org/10.1007/s10509-015-2585-z
49. Vavilova I.B., Melnyk O.V., Elyiv A.A. Morphological properties of isolated galaxies vs.isolation criteria. Astron.Nachr. 330, 1004 —1009 (2009).
https://doi.org/10.1002/asna.200911281
50. Vavilova I.B., Pakuliak L.K., Protsyuk Yu.I. Ukrainian Virtual Observatory (UkrVO). The goals, structure, and tasks. Kosm. nauka tehnol., 16(5), 62 —70 (2010) [in Russian].
https://doi.org/10.15407/knit2010.05.062
51. Vavilova I.B., Pakuliak L.K., Protsyuk Yu.I., et al. UkrVO Joint Digitized Archive and Scientific Prospects. Baltic Astron. 21, 356 —365 (2012)
52. Veron-Cetty M.P., Veron P. A catalogue of quasars and active nuclei:13th edition. Astron.and Astrophys. 518, id.A10 (2010).
https://doi.org/10.1051/0004-6361/201014188
53. Voevodkin A.A., Vikhlinin A.A., Pavlinskii M.N. Correlation between baryon mass and intergalactic gas temperature in Nearby Galaxy Clusters. Astron.Lett. 28(6), 366 —372 (2002).
https://doi.org/10.1134/1.1484136
54. Vol'vach A.E., Vol'vach L.N., Kut'kin A.M., et al. Multifrequency studies of the non-stationary radiation of the blazar 3C 454.3. Astron.Reports. 55(7), 608 —615 (2011).
https://doi.org/10.1134/S1063772911070092
55. Weinmann S.M., van den Bosch F.C., Yang X., et al. Properties of galaxy groups in the Sloan Digital Sky Survey. I.The dependence of colour, star formation and morphology on halo mass. Mon. Notic. Roy. Astron. Soc. 366(1), 2 —28 (2006).
https://doi.org/10.1111/j.1365-2966.2005.09865.x