High resolution space photometry as a method to reveal structure anomalies of the lunar surface

1Kaydash, VG, 2Shkuratov, Yu.G, 1Korokhin, VV
1Institute of Astronomy of V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
2Institute of Astronomy of V. N. Karazin Kharkiv National University, Kharkiv, Ukraine; Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(5):75–89
https://doi.org/10.15407/knit2015.05.075
Section: Space Astronomy
Publication Language: Russian
Abstract: 

We have reviewed studies of disturbed primordial structure of the lunar regolith, which is caused by both artificial and natural factors. To identify such disturbances, we used orbital high resolution photometry data in conjunction with the method of phase ratios, which makes it possible to evaluate the surface roughness of the light scattering element on the scale of less than imaging resolution. In particular, this method allows the identification of soil talus; it is also an efficient way to find new craters and places of falling meteoroid streams. The reliability of the new method is proved by the photometric detection of the anomalies associated with changes in the structure of the surface layer of regolith in landing sites of manned spacecraft, i.e., where the impact of human activity on the lunar regolith is well known. The results can be used in a planning and implementation of space missions to the Moon and other atmosphereless bodies of the solar system by the space agencies

Keywords: lunar surface, photometric anomalies., photometry, regolith
References: 

1. Blewett D., Levy C., Chabot N., et al. Phase-ratio images of the surface of Mercury: Evidence for differences in subresolution texture. Icarus, 242, P.142 —148 (2014).
https://doi.org/10.1016/j.icarus.2014.08.024

2. Chin G., Scott B., Foote M., et al. Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission. Space Sci Rev. 129, P.391— 419 (2007).
https://doi.org/10.1007/s11214-007-9153-y

3. Clegg R.N., Jolliff B.L., Robinson M.S., et al. Effects of rocket exhaust on lunar soil reflectance properties. Icarus, 227, P.176—194 (2014).
https://doi.org/10.1016/j.icarus.2013.09.013

4. Hapke B. Theory of reflectance and emittance spectroscopy. 450 p. (Cambridge Univ.Press, Cambridge, 1993).
https://doi.org/10.1017/CBO9780511524998

5. Immer C., Metzger P., Hintze P., et al. Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III. Icarus, 211(2), P.1089— 1102 (2011).
https://doi.org/10.1016/j.icarus.2010.11.013

6. Johnson J.R., Larson S.M., Singer R.B. A re-evaluation of spectral ratios for lunar mare TiO 2 mapping. Geophys.Res.Lett. 18(11), P.2153 — 2156 (1991).
https://doi.org/10.1029/91GL02094

7. Kaydash V., Kreslavsky M., Shkuratov Y., et al. Photometric anomalies of the lunar surface studied with SMART-1 AMIE data. Icarus, 202, P.393 — 413 (2009).
https://doi.org/10.1016/j.icarus.2009.03.018

8. Kaydash V.G., Shkuratov Y.G. Structural disturbance of the lunar surface caused spacecraft. Solar System Res. 46(2), P.108 —118 (2012).
https://doi.org/10.1134/S0038094612020050

9. Kaydash V.G., Shkuratov Y.G. Structure perturbations of the lunar surface near the landing site of "Lunokhod-1". Solar System Res. 48(3), P.167 —175 (2014).
https://doi.org/10.1134/S0038094614030034

10. Kaydash V., Shkuratov Yu., Korokhin V., Videen G. Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter. Icarus, 211, P.89 —96 (2011).
https://doi.org/10.1016/j.icarus.2010.08.024

11. Kaydash V., Shkuratov Y., Videen G. Phase-ratio imagery as a tool of lunar remote sensing. J.Quant.Spectrosc.and Radiat.Transfer. 113(18), P.2601— 2607 (2012).
https://doi.org/10.1016/j.jqsrt.2012.03.020

12. Kaydash V., Shkuratov Y., Videen G. Landing of the probes Luna 23 and Luna 24 remains an enigma. Planet.Space Sci. 89, P.172 —182 (2013).
https://doi.org/10.1016/j.pss.2013.08.021

13. Kaydash V.G., Shkuratov Y.G., Videen G. Dark halos and rays of young lunar craters:a new insight into interpretation. Icarus, 231, P.22 —33 (2014).
https://doi.org/10.1016/j.icarus.2013.11.025

14. Korokhin V.V., Velikodsky Y.I., Shalygin E.V., et al. Retrieving lunar topography from multispectral LROC images. Planet.Space Sci. 92, P.65 —76 (2014).
https://doi.org/10.1016/j.pss.2014.01.008

15. Kreslavsky M.A., Shkuratov Y.G. Photometric anomalies of the lunar surface: Results from Clementine data. J.Geophys.Res. 108E(3), P.5015 (2003).
https://doi.org/10.1029/2002JE001937

16. Lucey P.G. Mineral maps of the Moon. Geophys.Res.Lett. L08701 (2004) doi::10.1029/2003GL019406.

17. Lucey P.G., Blewett D.T., Bradley L.L. Lunar iron and titanium abundance algorithm based on final processing of Clementine ultraviolet –visible images. J.Geophys.Res. 105, P.20297— 20305 (2000).
https://doi.org/10.1029/1999JE001117

18. Lucey P.G., Blewett D.T., Taylor G.J., Hawke B.R. Imaging of the lunar surface maturity. J.Geophys.Res. 105, P.20377—20386 (2000).
https://doi.org/10.1029/1999JE001110

19. Mushkin A., Gillespie A.R. Estimating subpixel surface roughness using remotely sensed stereoscopic data. Remote Sens.Environ. 99, P.75 —83 (2005) doi:10.1016/j.rse.2005.02.018.
https://doi.org/10.1016/j.rse.2005.02.018

20. Pieters C.M., Shkuratov Yu.G., Kaydash V.G., et al. Lunar soil characterization consortium analyses: pyroxene and maturity estimates derived from Clementine data. Icarus, 184, P.83 —101 (2006).
https://doi.org/10.1016/j.icarus.2006.04.013

21. Robinson M.S., Boyd A.K., Denevi B.W., et al. New crater on the Moon and a swarm of secondaries. Icarus, 252, P.229 —235 (2015).
https://doi.org/10.1016/j.icarus.2015.01.019

22. Robinson M.S., Brylow S.M., Tschimmel M., et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci.Rev. 150, P.81 — 124 (2010).
https://doi.org/10.1007/s11214-010-9634-2

23. Shkuratov Y., Kaydash V., Gerasimenko S., et al. Probable swirls detected as photometric anomalies in Oceanus Procellarum. Icarus, 208, P.20 —30 (2010).
https://doi.org/10.1016/j.icarus.2010.01.028

24. Shkuratov Y., Kaydash V., Korokhin V., et al. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci. 59, P.1326 —1371 (2011). 10.1016/j.pss.2011.06.011.
https://doi.org/10.1016/j.pss.2011.06.011

25. Shkuratov Yu.G., Kaydash V.G., Opanasenko N.V. Iron and titanium abundance and maturity degree distribution on the lunar nearside. Icarus, 137, P.222 —234 (1999).
https://doi.org/10.1006/icar.1999.6046

26. Shkuratov Y., Kaydash V., Sysolyatina X., et al. Lunar surface traces of engine jets of Soviet sample return probes: The enigma of Luna-23 and Luna-24 landing sites. Planet.Space Sci. 75, P.28 —36 (2013).
https://doi.org/10.1016/j.pss.2012.10.016

27. Shkuratov Y., Kaydash V., Videen G. The crater Giordano Bruno as seen with optical roughness imagery. Icarus, 218(1), P.525 —533 (2012).
https://doi.org/10.1016/j.icarus.2011.12.023

28. Shkuratov Yu., Stankevich D., Kaydash V., et al. Composition of the lunar surface as will be seen from SMART-1: simulation using Clementine data. J.Geophys.Res.(Planets), 108E(4), P.1-1 —1-12 (2003).

29. Shkuratov Yu.G., Stankevich D.G., Petrov D.V., et al. Interpreting photometry of regolith-like surfaces with different topographies: Shadowing and multiple scatter. Icarus, 173, P.3 —15 (2005).
https://doi.org/10.1016/j.icarus.2003.12.017

30. Shkuratov Yu.G., Starukhina L.V., Kreslavsky M.A., et al. Principle of perturbation invariance in photometry of atmosphereless celestial bodies. Icarus, 109, P.168 —190 (1994).
https://doi.org/10.1006/icar.1994.1084

31. Velikodsky Yu.I., Opanasenko N.V., Akimov L.A., et al. New Earth-based absolute photometry of the Moon. Icarus, 214(1), P.30 —45 (2011).
https://doi.org/10.1016/j.icarus.2011.04.021