Properties of neutrino and search for effects beyond the standard model

1Boiko, RS, 1Danevich, FA, 1Zueva, OV, 1Kobychev, VV, 1Kobycheva, LM, 2Kobychev, RV, 1Kropivyansky, BN, 1Mokina, VM, 3Poda, DV, 4Polischuk, OG, 1Tymoshenko, AI, 4Tretyak, VI, 1Chernyak, DM
1Institute for Nuclear Research of the National Academy of Sciences of Ukraine , Kyiv, Ukraine
2Institute for Nuclear Research of the National Academy of Sciences of Ukraine , Kyiv, Ukraine; National Technical University of Ukraine ‘‘Kyiv Polytechnic Institute’’, Kyiv, Ukraine
3Institute for Nuclear Research of the National Academy of Sciences of Ukraine , Kyiv, Ukraine; CSNSM, Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3, Université Paris-Sud, Orsay, France
4Institute for Nuclear Research of the National Academy of Sciences of Ukraine , Kyiv, Ukraine; INFN, Sezione di Roma “La Sapienza”, Rome, Italy
Kosm. nauka tehnol. 2015, 21 ;(4):44–50
https://doi.org/10.15407/knit2015.04.044
Publication Language: Ukrainian
Abstract: 

Particles’ properties are closely related to cosmology and astrophysics. Explanation of neutrino oscillations, nature of dark matter and dark energy, baryon-antibaryon asymmetry call for extension of the Standard Model of particles. Properties of neutrino play an important role in the development of elementary particles models. Measurements of neutrinos from various sources, search for neutrinoless double beta decay are able to answer the key questions on the neutrino nature (whether it is Majorana or Dirac particle?), the absolute mass scale and the neutrino mass hierarchy, the lepton number conservation, the CP-symmetry violation due to neutrino mixing, etc. Search for interaction of hypothetical dark matter particles could answer to the question about nature and composition of dark matter in the Universe. 

Keywords: dark matter., double beta decay, neutrinos, standard model of elementary particles
References: 

1. Dolgov A.D. Cosmology and Elementary Particles or Mysteries in the Sky.  Physics of Elementary Particles and Atomic Nuclei43(3), 528— 572 (2012) [in Russian].

2. Kovtun G. P., Boiko R. S., Danevich F. A., et al. Development and properties of cadmium and lead tungstate low-background scintillators for double beta decay experiments.  Nuclear Physics and Atomic Energy15, 92—100 (2014) [in Russian].

3.  Aalseth C. E., Agnes P., Alexander T., et al. DarkSide.  Annual Report Laboratori Nazionali del Gran Sasso, 2013.  P. 71—79 (Assergi, 2014).

4.  Agnese R., Ahmed Z., Anderson A. J., et al. Silicon detector dark matter results from the final exposure of CDMS II.  Phys. Rev. Lett.   111, 251301, 6 p. (2013).

5. Akerib D. S., Araujo H. M., Bai X., et al. First results from the LUX dark matter experiment at the Sanford Underground Research Facility.  Phys. Rev. Lett.   112, 091303, 7 p. (2014).

6. Alimonti G., Arpesella C., Back H., et al. Science and technology of Borexino: a real-time detector for low energy solar neutrinos.  Astropart. Phys.   16 (3), 205—234 (2002).

7. Alimonti G., Arpesella C., Bacchiocchi G., et al. A large-scale low-background liquid scintillation detector: the counting test facility at Gran Sasso.  Nucl. Instrum. Methods Phys. Res. A.   406(3), 411—426 (1998).

8. Angloher G., Armengaud E., Augier C., et al. EURECA Conceptual Design Report.  Phys. Dark Universe.   3, 41—74 (2014).

9. Annenkov A. N., Buzanov O. A., Danevich F. A., et al. Development of CaMoO4 crystal scintillators for a double beta decay experiment with 100 Mo.  Nucl. Instrum. Methods Phys. Res. A.  584, 334—345 (2008).

10. Aprile E., Arisaka K., Arneodo F., et al. First dark matter results from the XENON100 experiment.  Phys. Rev. Lett.   105, 131302, 5 p. (2010).

11. Baer H., Barger V., Huang P., Tata X. Natural supersymmetry: LHC, dark matter and ILC searches.  J. High Energy Phys.   05, 109, 28 p.

12. Barabash A. S.  The new generation of double beta decay experiments: are there any limitations?  J. Phys. G: Nucl. Part. Phys.  39(8), 085103, 8 p. (2012).

13. Barabash A. S., Chernyak D. M., Danevich F. A., et al. Enriched Zn100 MoO4 scintillating bolometers to search for 0ν2β decay of 100 Mo with the LUMINEU experiment.  Eur. Phys. J. C.  74, 3133, 7 p. (2014).

14. Barea J., Kotila J., Iachello F. Limits on neutrino masses from neutrinoless double-β decay.  Phys. Rev. Lett.  109, 042501, 4 p. (2012).

15. Barinova O. P., Danevich F. A., Degoda V. Ya., et al. First test of Li2MoO4 crystal as a cryogenic scintillating bolometer.  Nucl. Instrum. Methods Phys. Res. A.  613, 54—57 (2010).

16. Bekker T. B., Coron N., Danevich F. A., et al. Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of 100 Mo.  Astropart. Phys.  72, 38—45 (2016).

17. Bellini G., Benziger J., Bonetti S., et al. Observation of geo-neutrinos.  Phys. Lett. B.  687 (4-5), 299—304 (2010).

18. Bellini G., Benziger J., Bick, D., et al. Precision Measurement of the 7 Be Solar Neutrino Interaction Rate in Borexino.  Phys. Rev. Lett.   107, 141302, 5 p. (2011).

19. Bellini G., Benziger J., Bick D., et al. Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy.  Phys. Rev. D.   89, 112007, 68 p. (2014).

20. Bellini G., Benziger J., Bick D., et al. Neutrinos from the primary proton-proton fusion process in the Sun.  Nature.  512, 383—386 (2014).

21. Bellini G., Benziger J., Bick D., et al. Borexino: recent solar and terrestrial neutrino results and description of the SOX project.  Proc. of the 2013 Europhysics conference on High Energy Physics, 18—24 July 2013, Stockholm, Sweden, Proceedings of Science 2014 (EPSHEP2013) 529. 8 p. (Stockholm, 2013).

22. Belli P., Bernabei R., Boiko R. S., et al. Search for double-β decay processes in 106 Cd with the help of a 106 CdWO4 crystal scintillator.  Phys. Rev. C. Nucl. Phys85, 044610, 12 p. (2012).

23. Belli P., Bernabei R., Boiko R. S. et al. Search for double beta decay of 136 Ce and 138 Ce with HPGe gamma detector.  Nucl. Phys. A.   930, 195—208 (2014).

24. Berge L., Boiko R. S., Chapellier M., et al. Purification of molybdenum, growth and characterization of medium volume ZnMoO4 crystals for the LUMINEU program.  J. Instrum.   09, P06004, 18 p. (2014).

25. Berguno D. B. Sterile neutrino search through disappearance studies with a high-intensity 51Cr source and the Borexino detector.  Proceedings of the XV International Workshop on Neutrino Telescopes, March 11—15 2013, Venice, Italy, Proceedings of Science 2014 (Neutel2013) 065. — 4 p.

26. Bernabei R., Belli P., Cappella F., et al. New results from DAMA/LIBRA.  Eur. Phys. J. C.   67 (1-2), 39—49 (2010).

27. Bilenky S. M. Neutrino Majorana.  Ann. Fondation Louis de Broglie.   31 (2—3), 139—156 (2006).

28. Bilenky S. M., Giunti C. Neutrinoless double-beta decay: a brief review.  Mod. Phys. Lett. A.  27, 1230015, 22 p. (2012).

29. Boiko R. S., Virich V. D., Danevich F. A., et al. Ultrapurification of archaeological lead.  Inorg. Mater.  47, 645—648 (2011).

30. Bossa M. (on behalf of the DarkSide collaboration). DarkSide-50, a background free experiment for dark matter search.  J. Instrum.  09, C01034, 11 p. (2014).

31. Bottino A., Fornengo N., Scopel S. Phenomenology of light neutralinos in view of recent results at the CERN Large Hadron Collider.  Phys. Rev. D—Parts and Fields85,  095013, 9 p. (2012).

32. Chernyak D. M., Danevich F. A., Giuliani A., et al. Rejection of randomly coinciding events in ZnMoO4 scintillating bolometers.  Eur. Phys. J. C.  74, 2913, 6 p. (2014).

33. Danevich F. A., Georgadze A. Sh., Kobychev V. V., et al. Application of PbWO4 crystal scintillators in experiment to search for 2β decay of 116Cd.  Nucl. Instrum. Methods Phys. Res. A.  556, 259—265 (2006).

34. Danevich F. A., Kobychev V. V., Kobychev R. V., et al. Impact of geometry on light collection efficiency of scin tillation detectors for cryogenic rare event searches.  Nucl. Instrum. Methods Phys. Res. B.  336, 26—30 (2014).

35. Danevich F. A., Kobychev R. V., Kobychev V. V., et al. Optimization of light collection from crystal scintillators for cryogenic experiments.  Nucl. Instrum. Methods Phys. Res. A.  744, 41—47 (2014).

36. Deppisch F. F., Hirsch M., Päs H. Neutrinoless double-beta decay and physics beyond the standard model.  J. Phys. G: Nucl. Part. Phys.  39, 124007, 23 p. (2012).

37. Giammarchi M. G. (on behalf of the Borexino Collaboration). Solar and geoneutrino physics with Borexino.  Nucl. Instrum. Methods Phys. Res. A: Accelerators, Spectrometers, Detectors and Assoc. Equip742, 250—253 (2014).

38. Gironi L., Arnaboldi C., Beeman J. W., et al. Performance of ZnMoO4  crystal as cryogenic scintillating bolometer to search for double beta decay of molybdenum.  J. Instrum.  5, P11007, 12 p. (2010).

39.  Giuliani A. Neutrino physics with low-temperature detectors.  J. Low Temp. Phys.  167 (5-6), 991—1003 (2012).

40. Grigoriev D. N., Danevich F. A., Shlegel V. N., Vasiliev Ya. V. Development of crystal scintillators for calorimetry in high energy and astroparticle physics.  J. Instrum.  09, C09004, 8 p. (2014).

41. Kim G. B., Choi S., Jang Y. S., et al. Thermal model and optimization of a large crystal detector using a metallic magnetic calorimeter.  J. Low Temp. Phys.  176, 637—643 (2014).

42. Lee S. J., Choi J. H., Danevich F. A., et al. The development of a cryogenic detector with CaMoO4 crystals for neutrinoless double beta decay search. Astropart. Phys.  34, 732—737 (2011).

43. Mohapatra R. N., Antusch S., Babu K. S., et al. Theory of neutrinos: A white paper.  Repts Progr. Phys.  70 (11), 1757—1867 (2007).

44. Pallavicini M. The SOX project: a search for sterile neutrinos with BoreXino.  Proceedings of the XV International Workshop on Neutrino Telescopes, March 11—15 2013 Venice, Italy, Proceedings of Science 2014 (Neutel2013) 026. 10 p.

45. Pirro S., Beeman J. W., Capelli S., et al.  Scintillating double-beta-decay bolometers.  Phys. Atom. Nucl.  69 (12), 2109—2116 (2006).

46. Rodejohann W. Neutrino-less double beta decay and particle physics.  Int. J. Mod. Phys. E.  20 (9), 1833—1930 (2011).

47. Rossi N., Bellini G., Benziger J., et al. The Borexino experiment: Recent results and future plans.  Nuovo cim.  37, 119—123 (2014).

48. Shlegel V. N., Berge L., Boiko R. S., et al. Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program.  EPJ Web of Conf.  65, 03001, 6 p. (2014).

49. Testera G. (on behalf of the Borexino Collaboration). Solar and geo neutrinos in Borexino: summary of the Phase-I measurements and recent results.  Proceedings of the XV Workshop on Neutrino Telescopes, 11—15 March 2013, Venice, Italy, Proceedings of Science 2014 (Neutel 2013) 008. — 10 p.

50. Vergados J. D., Ejiri H., Šimkovic F. Theory of neutrinoless double-beta decay.  Repts Progr. Phys. 75, 106301, 52 p. (2012).