Structural and functional changes in the cells of the bone tissue in space flight

1Rodionova, NV, 1Katkova, OV, 1Nesterenko, ON, 1Skripchenko, OV
1I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(3):48–53
https://doi.org/10.15407/knit2015.03.048
Section: Space Life Sciences
Publication Language: Russian
Abstract: 

The article is devoted to studying of the cellular mechanisms of gravitational-dependent changes in the long bones of the animals’ skeleton during the space flight on the international biosatellite «Bion-M1» and in land model experiments. Taking into account the obtained new data about ultrastructural reactions of bone tissue cells, the concept about mechanisms of the mechanotransduction and bone mass loss at lowering (removal) gravitational loading is offered

Keywords: cells of bone tissue, electron microscopy, long bones, weightlessness
References: 

1. Grigor'ev A. I., Volozhin A. I., Stupakov G. P. Mineral metabolism in humans under conditions of altered gravity. 216 p. (Nauka, Moscow, 1994)  (Problems of Space Biology, Vol. 74). [in Russian].

2. Oganov V. S. Skeletal system, weightlessness and osteoporosis. —  Ed. 2nd, add. 291 p. (Nauch. kniga, Voronezh, 2014) [in Russian].

3. Oganov V. S., Grigoriev A. I. Mechanisms of human osteopenia and some peculiarities of bone metabolism in weightles-sness conditions // Russian Journal of Physiology (formely I.M. Sechenov Physiological Journal). 98 (3), 395— 409 (2012) [in Russian].

4. Rodionova N. V. Functional morphology of cells in osteogenesis. 186 p. (Nauk. dumka, Kiev, 1989) [in Russian].

5. Rodionova N. V. The dynamics of proliferation and differentiation of osteogenic cells under supportive unloading. Cytol. Genet. 45(2), P. 22—27 (2011) [in Russian].

DOI: 10.3103/S0095452711020137

6. Rodionova N. V. Cytological mechanisms of rearrangements in bone while hypokinesia and microgravity.  238 p. (Nauk. dumka, Kyiv,  2006) [in Ukrainian].

7. Doty S. B. Space flight and bone formation.  Materwiss Werksttech35(12), 951—961 (2004).

8. Klein-Nulend J. Bacabac R. G. Veldhuyzen J. P., et al. Microgravity and bone cell mechanosensitivity.  Adv. Space Res32(8), 1551—1559 (2003).

9. Morey-Holton E. R., Globus R. K. Hindlimb unloading of growing rats: A model for predicting skeletal changes during space flight.  Bone.  22(5), 79—82 (1998).

10. Noble B. S., Reeve J. Osteocyte function, osteocyte death and bone  structure resistance.  Mol. and Cell. Endocrinol. 159, N (1-2), 7—13 (2000).

11. Rodionova N. V., Oganov V. S.  Peculiarity of ultrastucture and 45 Ca methabolism of osteoclasts in condictions of hind limb unloading and microgravity.  Vestnik zoology43(4), 305—313 (2009).

12. Rodionova N. V., Oganov V. S., Kabitskaya O.  Conception on the cell mechanisms of bone tissue loss under space flight conditions.  40th COSPAR Scientific Assembly.  F5.2-7-14 (electron publ.) (2014).

13. Rodionova N. V., Oganov V. S., Zolotova N. V. Ultrastructural changes in osteocytes in microgravity conditions.  Adv. Space  Res30(4), 765—770 (2002).