Study of the influence of simulated microgravity on the cytoplasmic membrane lipid bilayer of plant cells

1Kordyum, EL, 1Nedukha, OM, 2Grakhov, VP, 1Mel’nik, AK, 1Vorobyova, TM, 1Klimenko, OM, 1Zhupanov, IV
1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2M.M. Gryshko National Botanic Garden of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(3):40–47
https://doi.org/10.15407/knit2015.03.040
Section: Space Life Sciences
Publication Language: Ukrainian
Abstract: 

Results of the investigations of microviscosity, the composition of lipids and fatty acids in the fraction of the cytoplasmic membrane isolated from epicotyls and roots of Pisum sativum seedlings grown during 6 days under clinorotation are presented. Based on the changes in the investigated patterns, gravisensitivity of the cytoplasmic membrane was established, and a degree of gravisensitivity was higher in the root’s membrane. An increased content of sterols in the cytoplasmic membrane under clinorotation was shown for the first time. Urgent questions on further research of gravisensitivity/gravidependence of the plant cell cytoplasmic membrane are discussed.

Keywords: clinorotation, lipid bilayer, membrane, Pisum sativum, sterols
References: 

1.  Neduha O. M., Grahov V. P., Vorobjova T. V.  et al. The effects of horizontal clinorotation on the content of  lipids of plasmolemma peas. 14th Ukrainian Conference on Space Research: Abstracts,  P.56 (Uzhgorod, 2014) [in Ukrainian].

2.  Poluljah Ju. A. The content of phospholipids and fatty acids in the plasma membrane of cells in pea root clinorotation.  Dokl. AN USSR. Ser. Biol.  N 10, 67—69 (1988) [in Russian].

3.  Belitser N. V., Zaalishvili G., Sytnniankaja N. Ca2+-binding sites and Ca2+-ATPase activity in barley root tip cells.  Protoplasma.  111, 63—78 (1982)
https://doi.org/10.1007/BF01287647

4. Borner G. H. H., Sherrier B.O., Weimar T., et al. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts.  Plant Physiol137, 104—116 (2005)
https://doi.org/10.1104/pp.104.053041

5. Kabała K., Kłobus G. Plant Ca2+-ATPases.  Acta  Physiol. Plantarum27, Is.4, 559—574 (2005).

6. Carde J.-P. Electron microscopy of plant cell membranes.  Methods Enzymol, 148, 599—622 (1987).

7. Goldermann M., Hanke W. Ion channel are sensitive to gravity changes.  Microgravity Sci. Technol. 13, 35—38 (2001)

8. Hanke W. Planar lipids bilayers as model systems to study the interaction of gravity with biological membranes.  30th COSPAR Scientific Assembly.  P. 283 (Hamburg, Germany.)

9. Kittang A.-I., Iversen T.-H., Fossum K. R., et al. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. J. Plant Biology. doi:10. 1111/plb. 12132.

10. Kordyum E. L. Biology of plant cells in microgravity and under clinostating.  Int. Rev. Cytol171, 1—78 (1997).

11. Kordyum E. L. Plant cell gravisensitivity and adaptation to microgravity.  J. Plant Biology16 (1), 79—90 (2014).

12. Kraft M. L. Plasma membrane organization and function: moving past lipid rafts.  Mol. Biol. Cell24, 2765—2768 (2013).

13. Larsson Ch., Sommarin M., Widell S. Isolated of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles.  Methods in Enzymology228, 451—469 (1994).
https://doi.org/10.1016/0076-6879(94)28046-0

14. Lingwood D., Simons K. Lipid rafts as a membrane-or-ganizing principle.  Science. 327,  46— 50 (2010).
https://doi.org/10.1126/science.1174621

15. Los D. A., Murata N. Structure and expression of fatty acid desaturases.  Biochim. et biophys. acta.  1394, 3—15 (1998).

16. Mazars C., Brière C., Grat S., et al. Microgravity induces changes in microsome-associated proteins of Arabidopsis geedlings grown on board the International Space Station.  PLOS, 9, 1—18 (2014).

17. Monesterolo N. E,  Amaiden M. R.,  Campetelli A. N., et al. Regulation of plasma membrane Ca2 +-ATPase activity by acetylated tubulin: Influence of the lipid environment.  Biochim. et biophys. acta — Biomembranes. 1818, 601—608 (2012).

18. Mongrand S., Morel J., Laroche J., et al.  Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane.  J. Biol. Chem.  279, 36277—36286 (2004).

19. Murakami Y., Tsuyama M., Kobayashi Y., et al. Trienoic fatty acids and plant tolerance of high temperature.  Science287, 476—479 (2000).
https://doi.org/10.1126/science.287.5452.476

20. Nedukha O. M., Kordyum E. L., Grakhov V. P., et al. Fatty acids and lipids content in Pisum sativum seedlings plasmalemma under clinorotation.  Proc. Plant Biology and Biotechnology International Conf., Almaty, Kazakhstan, P. 176 (2014).

21. Polulyakh Yu. A., Zhadko S. I., Klimchuk D. A. Plant cell plasma membrane structure and properties under clinostating.  Adv. Space Res9, 71— 74 (1989).
https://doi.org/10.1016/0273-1177(89)90057-4

22. Rupwate S. D.,  Rajasekharan R. Plant phosphoinositide-specific phospholipase C.  Plant Signal. Behav7, 1281—1283 (2012).

23. Sieber M., Hanke W., Kohn F. P. M.  Modification of membrane fluidity by gravity.  Open J. Biophysics4, 105—111 (2014).