Methodology, hardware implementation, and validation of satellite remote sensing of atmospheric aerosols: first results of the Aerosol-UA space experiment development

1Syniavskyi, II, 2Milinevsky, GP, 1Ivanov, Yu.S, 1Sosonkin, MG, 3Danylevsky, VO, 1Rosenbush, VK, 1Bovchaliuk, AP, 4Lukenyuk, AA, 5Shymkiv, AP, 6Mishchenko, MI
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
3Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
4L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine
5Lviv Centre of Institute for Space Research of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Lviv, Ukraine
6The NASA Goddard Institute for Space Studies, New York, USA
Kosm. nauka tehnol. 2015, 21 ;(3):09–17
https://doi.org/10.15407/knit2015.03.009
Section: Space Instruments
Publication Language: Ukrainian
Abstract: 

Preparations have been made for the development of the instrumentation suite for the space experiment Aerosol-UA (NAS), in particular, of the polarimeter ScanPol intended for remote-sensing studies of the global distribution of aerosol properties and clouds in the terrestrial atmosphere by means of polarimetric and spectral measurements of the scattered sunlight. Various components of the polarimeter ScanPol have been prototyped, including the optomechanical and electronics assemblies and the scanning mirror controller. The conceptual design of the algorithm for the retrieval of aerosol parameters over water and land surfaces and clouds has been developed. Methods for the validation of satellite data using a mobile sunphotometer station as well as for the calibration of aerosol polarimetry have been further refined.

Keywords: polarimeter., space experiment, the study of aerosols
References: 

1.  Yatskiv Ya.S., Mishchenko M.I., Rosenbush V.K., et al. Satellite project «Aerosol-UA »: Remote sensing of aerosols in the Earth ’s atmosphere.  Kosm. nauka tehnol., 18(4), 3—15 (2012) [in Russian].
https://doi.org/10.15407/knit2012.04.003
2.  Bodhaine B., Wood N. B., Dutton E. G., Slusser J. R. On Rayleigh optical depth calculations.  J. Atmos. Oceanic Technol. 16, 1854—1861 (1999).
https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2
3.  Bovchaliuk V., Bovchaliuk A., Milinevsky G., et al. Aerosol Microtops II sunphotometer observations over Ukraine. Adv. Astron. Space Phys3, 46—52 (2013).
4.  Bréon F. M., Tanré D., Lecomte P. Herman M. Polarized reflectance of bare soils and vegetation: measurements and models.  IEEE Trans. Geosci. Remote Sens33, 487—499 (1995).
5. Chu D. A., Kaufman Y. J., Ichoku C., et al. Validation of MODIS aerosol optical depth retrieval overland.  Geophys. Res. Lett.  29, P. 1617 (4 p.) (2002).
6. De Haan J. F., Bosma P. B., Hovenier J. W. The adding method for multiple scattering calculations of polarized light.  Astron. and Astrophys183, 371—391 (1987) .
7. Dubovik O., Holben B. N., Eck F. T., et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations.  J. Atmos. Sci59, 590—608 (2002).
8. Fan X., Goloub P., Deuze J.-L., et al. Evaluation of PARASOL aerosol retrieval over North East Asia. Remote Sens. Environ. 112, 697—707 (2008).
9. Hansen J. E., Travis L. D. Light scattering in planetary atmospheres.  Space Sci. Rev. 16,  527—610 (1974).
10. Holben B. N., Eck T. F., Slutsker I., et al. AERONET — a federated instrument network and data archive for aerosol characterization.  Remote Sens. Environ.  66, 1—16 (1998).
11. Ichoku S., Chu D.A., Mattoo S., et al. A spatio-temporal approach for global validation and analysis of MODIS aerosol products.  Geophys. Res. Lett. 29, P. 1616 (4 p.), (2002).
12. Kahn R. A., Gaitely B. J., Martonchik J. V., et al. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations.  J. Geophys. Res.  110, P. D10S04 (16 p.), (2005).
13. Milinevsky G., Danylevsky V., Bovchaliuk V., et al. Aerosol seasonal variations over urban-industrial regions in Ukraine according to AERONET and POLDER measurements.  Atmos. Meas. Tech7, 1459—1474 (2014).
14. Milinevsky G. P., Danylevsky V. O., Grytsai A. V., et al. Recent development of atmosphere research in Ukraine.  Adv. Astron. Space Phys.   2, 114—120 (2012).
15. Mishchenko M. I., Cairns B., Kopp G., et al. Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory mission.  Bull. Amer. Meteorol. Soc88, 677—691 (2007).
16. Mishchenko M. I ., Liu L., Geogdzhayev I. V., et al. Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET.  J. Quant. Spectrosc. Radiat. Transfer111, 540—552 (2010).
17. Rodgers C. D. Inverse methods for atmospheric sounding. Theory and practice.  238 p. (World Scientific Publ., Hackensack, NJ, 2000).
18. Waquet F., Cairns B., Knobelspiesse K., et al. Polarimetric remote sensing of aerosols over land. J. Geophys. Res.  114, 23 p., D01206 (2009). –4), 504—518 (2005).
19. Fül le krug M., Mareev E. A., Rycroft M. J.  (Eds.) Sprites, elves and intense lightning discharges.  Nato Sci. Ser. II225, 398 p. (2006).
20. Uman M. A. The art and science of lightning protection. 239 p. (Univ. Press, Cambridge, 2008).
21. Wescott E. M., Sentman D. D., Stenbaek-Nielsen H. C., et al. New evidence for the brightness and ionisation of blue starters and blue jets.  J. Geophys. Res.: Space Phys. 106, N A10, P. 21549—P. 21554 (2001).
22. Wilson C. T. R. The electric field of a thundercloud and some of its effects.  Proc. Phys. Soc. London.  37, P. 32D—P. 37D (1925).