Numerical modelling of supersonic flow around a wedge with the use of free open software code OpenFOAM

1Karvatskii, AYa., 1Pulinets, IV, 1Lazarev, ТВ, 1Pedchenko, AYu.
1National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(2):47–52
https://doi.org/10.15407/knit2015.02.047
Section: Spacecraft Dynamics and Control
Publication Language: Russian
Abstract: 

Сalculation of supersonic flow around a wedge shaped body was considered as an example of the usage of the free open software code OpenFOAM with the application of solvers. The influence of incoming air flow velocity on the distribution of pressure, velocity, and temperature in the calculation area was studied. Numerical results and accurate solutions were compared, and the data obtained were analyzed.

Keywords: inviscid flow, oblique shock, OpenFOAM, supersonic flow, wedge airfoil
References: 

1. Belocerkovskij O. M.  Chislennoe modelirovanie v mehanike sploshnyh sred, 517 p. (Nauka, Moscow, 1984) [in Russian].

2. Kalugin V.T., Strijak S.V.  Selection of aerodynamic configuration of a probe streamlined by a turbulent swirling gas flow.  Science and Education, 125, 181—198 (2012) [in Russian].

3. Karafoli E. High-speed aerodynamics. Trans. From English, Ed.  L. P. Smirnov,  725 p. (Izd-vo Akad. nauk SSSR, Moscow, 1960) [in Russian].

4. Krasnov N. F., Koshevoj V. N., Danilov A. N., Zaharchenko V. F. Aerodynamics of missiles, 772 p. (Vyssh. shk., Moscow, 1968) [in Russian].

5. Lipnickij Ju. M., Krasil'nikov A. B., Pokrovskij A. N., Shmanenkov V. N. Unsteady Aerodynamics of ballistic flight, 174 p. (Fizmatlit, Moscow, 2003) [in Russian].

6. Lunjov V. V. The flow of real gases at high velocities.(Techenie real'nyh gazov s bol'shimi skorostjami), 760 p. (Fizmatlit, Moscow, 2007) [in Russian].

7. Ferri A. The aerodynamics of supersonic flows. Trans. fron English, Ed.  R. I. Shtejnberg, 466 p. (GITTL, Moscow-Leningrad, 1952) [in Russian].

8. Anderson J. Modern Compressible Flow: With Historical Perspective.  2nd ed. 650 р. (McGraw-Hill, New York, 2004).

9. Ferziger J. H., Peric M. Computational Methods for Fluid Dynamics. 423 p. (Springer-Verlag, Berlin, 2002).

10. Hafez M. M., Oshima K., Kwak D. Computational fluid dynamics. Review 2010.  618 p. (Mainland Press, Singapore, 2010).

11. Houghton E. L., Brock A. E. Equations, tables and charts foe compressible flow. NASA Technical Report. 69 p. (Moffett Field, California, 1953).

12. Issa R. I. Solution of implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40—65 (1986).

13. Jang D. S., Jetli R., Acharya S. Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer. Heat Transfer Appl. 10, 209—228 (1986).

14. Kurganov A. Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection – diffusion equations. J. Comput. Phys. 160 (1), 241—282 (2000).