Determination of orientation, coordinates, relative position and movement parameters of objects in space with the GNSS technology

1Lutsenko, IV, 1Popov, DO, 2Laush, AG, 3Yatsenko, VO, 4Zhalilo, OO, 5Ditskiy, IV, 6Bessonov, EA
1O.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Science of Ukraine, Kharkiv, Ukraine
2Co. Ltd. «Navis-Ukraine», Smila, Ukraine
3Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
4Kharkiv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Kharkiv, Ukraine, Main Astronomical Observatory NAS of Ukraine, Kyiv, Ukraine
5Kharkiv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Ukraine
6Kharkіv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Kharkiv Ukraine
Kosm. nauka tehnol. 2015, 21 ;(2):40–46
https://doi.org/10.15407/knit2015.02.040
Section: Spacecraft Dynamics and Control
Publication Language: Ukrainian
Abstract: 

We give the results of experimental studies of the errors arising when the position, orientation and distance between space objects are determined using the signals from receivers of global navigation satellite systems. The errors were evaluated with the use of the signal simulator and model sample of specific measurement systems under terrestrial conditions. The construction features of a new type of cosmic accelerometer with a superconducting levitating suspension are described.

Keywords: docking, mutual orientation, simulator of GNSS signals, space accelerometer
References: 

1.  Bessonov E. A., Dickij I. V. Evaluation and Interpolation of zenith tropospheric delay using GNSS reference station network observations. Radiotehnika, Issue 173, 145—152 [in Russian].

2.  Gudkov V.N., Jianyuan Wang, Laush A.G., et al.  Interpolation Method of Generating the Differential Amendments in Determining of Coordinates and Pseudo-Range Measurements in a Global Positioning System.  Fiz. osnovy priborostroenija, 3 (1), 42—57 (2014) [in Russian].

3. Dickij I. V. Differential GPS-positioning of millimeter-level accuracy on long baselines. Tr. 18-go Mezhdunar. molodjozhnogo foruma «Radiojelektronika i molodjozh' v XXI veke»: Tez. dokl.  3, 119—120 (Har'kov, 2014) [in Russian].

4. Zhalilo A. A., Zhelanov A. A., Dickij I. V.et al. Experimental evaluation of the characteristics of the new network technology single-frequency GNSS positioning with centimeter accuracy Observing sparse reference station networks. Mater. XI Mizhnar. naukovo-tehn. konf. «Avia-2013»: Tez. dokl. 2, P.7.38—7.41 (Kiev, 2013) [in Russian].

5. Latjuk A. F., Laush A. G., Popov D. O. The reception of GNSS signals in conditions of jamming.  Pjatyj mezhdunar. radiojelektronnyj forum «Prikladnaja radiojelektronika. Sostojanie i perspektivy razvitija» (MRF–2014),  P. 211—215 (Har'kov, 2014) [in Russian].

6. Laush A. G., Medvezhonkov V. A., Homenko Ju. M. Testing of navigation spacecraft simulator using the navigation field Global Navigation Satellite Systems GPS / GLONASS / GALILEO. 14th Ukrainian Conference on Space Research: Abstracts,  P.96 (Uzhgorod, 2014) [in Ukrainian].

7. Lutsenko V.I., Lutsenko I.V.,  Popov D.O., et al. Elimination of abnormally high errors of determining the coordinates of global navigation satellite system receivers.  23th Int. Crimean conf. “Microwave & Telecommunication Technology” (CriMiCo’2013).  Р. 308—309 (Sevastopol, 2013) [in Russian].

8. Nalivajchuk N., Jacenko V. Firmware adaptive opto-cryogenic on gravimeter based nanostructures.  13th Ukrainian Conference on Space Research: Abstracts,  P.139 (Kafedra, Kyiv, 2013) [in Russian].

9. Yatsenko V., Ivanov S., Nalivajchuk M. Algorithmic and the software of satellite adaptive semiconductor accelerometer. 14th Ukrainian Conference on Space Research: Abstracts  P.82 (Uzhgorod, 2014) [in Ukrainian].

10. Kravchenko V. F., Laush A. G., Lutsenko V. I., et al. The three-point method of differential correction of coordinates and pseudo-range in GPS.  J. Measurement Sci. and Instrumentation. 5(1) (Mar. 2014, Sum N 17), P. 41—45 (2014).

11. Yatsenko V. Modeling and optimization of a superconducting space accelerometer based on functional thin films.  Int. conf. “Learning and Intelligent Optimization Conference” (LION 8): Abstract. (Florida, USA, 2014).

12. Yatsenko V., Nalivaichuk N. Optocryogenic sensitive element with ultrasensitive laser interferometer and microprocessor controller.  IEEE Int. conf. on Advanced Optoelectronics and Lasers (CAOL-2013): Abstracts. P. 39. (Kharkov, 2013).