Stability of crystallization front in prizmatical ampule under fast vibration

1Ladikov-Roev, Yu.P, 1Loginov, OO, 1Cheremnykh, OK
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(2):81–85
https://doi.org/10.15407/knit2015.02.081
Section: Space Material Science
Publication Language: Russian
Abstract: 

The influence of uniform vibration on the stability of crystallization front in prizmatical ampule under microgravitation conditions is considered. The vertical and horizontal vibrations are studied. It is established that horizontal vibration causes curving of the crystallization front, which results in a worsening of crystal quality. Vertical vibration induces agitation of melt and, under certain conditions, may improve crystal characteristics

Keywords: control, microgravity, space experiment, stability, vibration, сrystallization
References: 

1. Akimenko V. V., Cheremnyh O. K. Modeling of eddy currents on the background of a two-dimensional process of convective heat and mass transfer.  Journal of Automation and Information Sciences,  No.2, 44—55 (2004) [in Russian].

2. Gershuni G. Z., Zhuhovickij E. M. Convective stability of incompressible fluid (Konvektivnaja ustojchivost' neszhimaemoj zhidkosti), 392 p. (Nauka, Moscow, 1972) [in Russian].

3. Dolgih G. A., Feonychev A. I. Numerical study of heat and mass transfer at directional crystallization in zero gravity  Problemy mehaniki i teploobmena v kosmicheskoj tehnike, (Mashinostroenie, Moscow, 1982) [in Russian].

4. Zemskov V. S. New scientific understanding of the processes accompanying directional solidification, - the result of experiments on growing crystals of semiconductors on spacecraft.  VII Ros. simp. «Mehanika nevesomosti. Itogi i perspektivy fundamental'nyh issledovanij gravitacionno-chuvstvitel'nyh sistem: Sb. tr.  P. 34—51 (IPM RAN, Moscow, 2001) [in Russian].

5. Klimenko Ju. A., Ladikov-Roev Ju. P., Cheremnyh O. K., Sal'nikov N. N. The study of temperature fields and the geometry of the front during the crystallization of the substance by the Bridgman method. Journal of Automation and Information Sciences, No.5, 27—37 (2003) [in Russian].

6. Ladikov-Roev Ju. P., Cheremnyh O. K. Mathematical models of continuous media (Matematicheskie modeli sploshnyh sred), 552 p. (Nauk. dumka, Kiev, 2010) [in Russian].

7. Ljubimov D. V., Ljubimova T. P., Cherepanov A. A. Dynamics of interface surface in the vibration fields, 72 p. (Fizmatgiz, Moscow, 2003) [in Russian].

8. Sal'nikov N. N., Klimenko Ju. A., Ladikov-Roev Ju. P., Cheremnyh O. K. Conditions for the implementation of the flat crystallization front in the cylindrical vial to Bridgman install.  Journal of Automation and Information Sciences, No.5, 36—50 (2003) [in Russian].

9. Chernov A. A., Gavargizov E. I., Bogdarasov H. S. et al. “Formation of crystals,  in  Modern crystallography, V. 3, 408 p.  (Vols. 1-4; Vol.3) (Nauka, Moscow, 1980) [in Russian].

10. Shpak A. P., Ladikov-Roev Yu. P., Rabochii P. P. et al. The investigation of stationary regimes in a crystallization setup with the use of the Bridgeman method.  Kosm. Nauka tehnol., 9 (5/6), 24—29 (2003) [in Russian].

11. Shpak A. P., Fedorov O. P., Bersuds’kyi E. I., Zhyvolub E. L. Some problems in the investigation of the processes of directional crystallization under microgravity (Creating the MORPHOS installation). Kosm. Nauka tehnol.,  8 (5/6), 19—27 (2002) [in Russian].

12. Flemings M. Solidification Processing, 354 p. (N.-Y., 1974).