Features of the control of solidification structure using directional crystallization with superimposed vibration exposure under weightlessness conditions

1Demchenko, VF, 2Fedorov, OP
1Space Research Institute of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(2):73–80
https://doi.org/10.15407/knit2015.02.073
Publication Language: Ukrainian
Abstract: 

For the purpose of preparing a space experiment, we accomplished a mathematical simulation of the hydrodynamic and thermal processes during crystal growing by the Bridgeman and the floating zone techniques under terrestrial and microgravity conditions was held. The features of the hydrodynamic state of the melt when exposed to axial vibration of different frequencies and intensities were studied. It is shown that the suppression of non-stationary contours of melt flow before the crystallization front is possible in both methods, but the floating zone method is less sensitive to Rayleigh-Taylor instability of liquid phase flow under weightlessness conditions

Keywords: Bridgman technique, floating zone technique, melt flow, microgravity, сrystallization
References: 

1. Gershuni G. Z., Zhuhovickij E. M. Convective stability of incompressible fluid, 296 p. (Nauka, Moscow, 1972) [in Russian].

2. Demchenko V. F., Asnis E. A., Lesnoj A. B. et al. Investigation of distributed characteristics of electron beam formed by ring cathode in electron beam zone melting.  Sovremennaja jelektrometallurgija,  № 3, 20—23 (2007) [in Russian].

3. Zharikov E. V., Avetisov I. H., Skorenko A. V. et al. Preparing the space experiment on growing crystals by directional solidification under conditions of vibration impact on the Russian segment of the International Space Station.  The Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, No. 9, 56—62 (2001) [in Russian].

4. Zemskov V. S., Rauhman M. R., Shalimov V. P. nfluence of microgravity on the uniformity of semiconductor crystals grown on spacecraft methods of directional solidification. Results and prospects of research in IMET RAS.  The Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, No. 9, 41—47 (2001) [in Russian].

5. Ivanov L. I, Zemskov V. S., Kubasov V. N. et al. Melting, crystallization and phase formation in microgravity (Plavlenie, kristallizacija i fazoobrazovanie v nevesomosti), 256 p. (Nauka, Moscow, 1979) [in Russian].

6. Ovsienko D. E., Fedorov O. P., Temkin D. E., Chemerinskij G. P. Interaction particulate crystals growing from melt.  Crystallography Reports, 32 (5), 1246—1252 (1987) [in Russian].

7. Paton B.E., Asnis E.A., Zabolotin S.P. et al. The production of perfect materials in space].  Kosm. nauka tehnol., 8 (5/6),  15—18 (2002) [in Russian].

8. Fedorov O. P. Processes of crystal growth: kinetics, shaping, heterogeneity (Processy rosta kristallov: kinetika, formoobrazovanie, neodnorodnosti),  207 p. (Nauk. dumka, Kiev, 2010) [in Russian].

9. Artemyev V. K., Folomeev V. I., Ginkin V. P., et al. The mechanism of Marangoni convection influence on dopant distribution in Ge space — grown single crystals.  J. Crystal Growth  223 (1-2), 29—–37 (2001).

10. Chopra M. A., Glicksman M. E., Singh N. B. Dendritic Solidification in Binary Alloys.  Met. Trans. A19 (12), 3087—3096 (1988).

11. Fedoseyev A. I., J. Iwan D Alexander. Investigation of vibrational control of convective flows in Bridgeman melt

growth configurations.  J. Cryst. Growth. 211 (1–2),  34—42 (2000).

12. Fedyushkin A., Bourago N., Polezhaev V., Zharikov E. The influence of vibration on hydrodynamics and heat-mass transfer during crystal growth. J. Cryst. Growth. 275 (1–2),  e1557—e1563 (2005).

13. Mazzoni S., Shevtsova V., Mialdun A., et al. Vibrating liquids in space. Europhys. news.  41 (6), 14—16 (2010).

14. Trivedi R., Somboonsuk K. Puttern formation during directional solidification of binary systems. Acta Met. 33 (6), 1061—1068 (1985).

15. Yu W. C., Chen Z. B., Hsu W. T., et al. Reversing radial segregation and suppressing morphological instability during Bridgman crystal growth by angular vibration. J. Cryst. Growth.  271 (3–4), 474—480 (2004).