Background particle detector for the solar x-ray photometer ChemiX of space mission “Interhelioprobe”: an adjustment of breadboard model modules

1Dudnik, OV, 1Kurbatov, EV, 2Tarasov, VO, 2Andryushenko, LA, 3Zajtsevsky, IL, 4Sylwester, J, 4Bąkała, J, 4Kowaliński, M
1Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkiv, V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
2Іnstitute for Scintillation Materials of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
3Institute Issues Safety of Nuclear Power Stations of National Academy of Sciences of Ukraine, Kyiv, Ukraine
4Space Research Centre of Polish Academy of Sciences, Wroclaw, Poland
Kosm. nauka tehnol. 2015, 21 ;(2):03–14
https://doi.org/10.15407/knit2015.02.003
Section: Space Devices Designing
Publication Language: Russian
Abstract: 

We present our results of investigation, adjustment and measuring of the parameters of laboratory prototypes of the analog processing signal and secondary power supply units for Background Particle Detector of the Polish-Ukrainian X-ray spectrophotometer ChemiX for the interplanetary “Interhelioprobe” mission. We describe the laboratory benches designed, manufactured and tested for controlling the analog module parameters and for investigating the characteristics of small-size organic and inorganic scintillation detectors. The functional block diagram of the pilot model of digital signal processing and information data streaming based on ProASIC3E М1А3РЕ1500 FPGA is presented. We also present the results of the BPD digital module test project prototype simulation using the ModelISim Micrоsemi ME 10.2c program simulator

Keywords: charge particle detector, FPGA, satellite device, scintillator, software, spectrometer, technique of adjustment, X-ray photometer
References: 

1. Dudnik A.V., Kurbatov E.V., Sil'vester Ja. et al. Development of small-sized satellite device SIDRA to monitor charged particle flux in space.  Space Research in Ukraine, 2012 —2014. The Report to the COSPAR, 65 —70 (Akademperiodyka, Kyiv, 2014) [in Russian].
2. Dudnik O.V., Prieto M., Kurbatov E.V. et al. A small-sized device for monitoring of high-energy electrons and nuclei in the outer space.  Kosm. nauka tehnol., 18 (6), 22 —34 (2012) [in Russian].
https://doi.org/10.15407/knit2012.06.022
3. Dudnik O.V., Prieto M., Kurbatov E.V. et al. SIDRA Instrument for Measurements of Particle Fluxes at Satellite Altitudes. Laboratory Prototype.  Astron. vestn. 47 (1), 61 —69 (2013) [in Russian].
4. Kuznecov V.D. Space research of the Sun: state and prospects. Solar-Terrestrial Physics, Issue 16, 39 —44 (2010) [in Russian].
5. Kuznetsov V.D.  Solar-terrestrial physics and its applications.  Advances in Physical Sciences, 182, 327—336 (2012) [in Russian].
6. Kuznecov V.D., Zelenyj L.M. Space projects on solar-terrestrial physics.  Solar-Terrestrial Physics, 1, Issue 12, 83 —92 (2008) [in Russian].
7. Kurbatov E.V., Dudnik A.V., Titov K.G. et al. Comparative characteristics of assemblies of small scintillators based on p-terphenyl and silicon photomultipliers.  XI-ja konf. po fizike vysokih jenergij, jadernoj fizike i uskoriteljam: Tez.dokl., P.99 (Kiev, 2013) [in Russian].
8. Sil'vestr Ja., Bakala Ja., Podgorski P. et al. "ChemiX  - solar Bragg spectrometer soft X-ray range of the new generation. Proekt «Intergeliozond»: Proceedings «Intergeliozond» workshop, 52 —64 (Tarusa, 2012) [in Russian].
9. Dudnik O.V., Bilogub V.V., Kurbatov E.V., et al. Compact on-board instrument SIDRA for measurement of particle fluxes & dose rates — concept and first model. 9 th Ukr. Conf. on Space Research: Abstracts. P.78 (2009).
10. Dudnik O.V., Kurbatov E.V., Avilov A.M., et al. Results of the first tests of the SIDRA satellite-borne instrument breadboard model. Probls Atomic Sci. and Technology. Ser. ”Nuclear Physics Investigations“ 3(85), N 60, 297 —302 (2013).
11. Dudnik O.V., Prieto M., Kurbatov E.V., et al. First concept of compact instrument SIDRA for measurements of particle fluxes in the space. J. Kharkiv Univ. Phys. Ser. “Nuclei, Particles, Fields” 969, N 3(51), 62 —66. (2011).
12. Dudnik O.V., Prieto M., Kurbatov E.V., et al. Approaches to signal processing from the light scintillation and semiconductor detectors in the compact satellite instrument SIDRA for monitoring of high energy charge particles. 12 th Ukr. conf. on space research: Abstracts. P.102 (2012).
13. Dudnik O.V., Prieto M., Kurbatov E.V., et al. Functional capabilities of the breadboard model of SIDRA satelliteborne instrument. Probls Atomic Sci. and Technology. Ser. ”Nuclear Physics Investigations“ 3(85), N 60, 289 —296 (2013).
14. Dudnik O.V., Sanchez S., Prieto M., et al. Onboard instrument SIDRA prototype for measurements of radiation environment in the space. 39 th Scientific Assembly of COSPAR. Session H0.3 “Technical Development of Instrumentation for Current Missions”: Abstracts. Abstract STW-B-153 H0.3-0023-12, P.106 (2012).
15. Dudnik O.V., Sylwester J., Siarkowski M., Kowalinski M., et.al. The high energy charge particle detector module in the ChemiX instrument aboard Interhelioprobe mission: the goals, concept and design. 13 th Ukr. Conf. on space research: Abstracts. P. 123 (2013).
16. Kuznetsov V., Zelenyi L. The Interhelioprobe Mission for Solar and Heliospheric Studies. 40 th COSPAR Scientific Assembly. Panel D2.4 “The Science with Future Solar missions, from the Sun to the Heliosphere ”: Abstracts. Abstract N.D2.4-3-14. (2014).
17. Murphy N. Measurement and Instrument Challenges for Future Solar and Heliospheric Missions. Joint Assembly of American Geophysical Union. Section “SPA-Magnetospheric Physics”, Session “Technology Development for Sun/Solar System Connections Science I”: Abstracts. Abstract N SM33C-01. (2006).
18. Prieto M., Dudnik O.V., Sanchez S., et al. Breadboard model of the SIDRA instrument designed for the measurement of charged particle fluxes in space. J.Instrumentation. 8, T04002 (2013).
19. Prieto M., Guzman D., Garcia J.I., et.al. Control Unit of the SIDRA Scientific Instrument. Proc. of 9 th Conf. “Jornadas de Computacion Reconfigurable y Aplicaciones” P. 475 —484 (Alcala de Henares, Spain, 2009).
20. Sylwester J., Kordylewski Z., Plocieniak S., et al. X-ray Flare Spectra from the DIOGENESS Spectrometer and its concept applied to ChemiX on the Interhelioprobe spacecraft. Solar Phys. arXiv:1411.0850 [astro-ph.SR] (2014).
21. Sylwester J., Kuznetsov V., Zimovets I., et al. ChemiX: a new generation bent crystal spectrometer for Interhelioprobe mission to the Sun. 40 th COSPAR Scientific Assembly. Panel D2.4 “The Science with Future Solar missions, from the Sun to the Heliospher”: Abstracts. Abstract D2.4-34-14 (2014).
22. Sylwester J., Siarkowski M., Szaforz Z., Bakala J., Dudnik O., et al. ChemiX — the soft X-ray Bragg spectrometer under development for the Interhelioprobe Mission. 13 th RHESSI Workshop. Session “Current and Future Instrumentation”: Abstracts. P.17 (2014).
23. Watanabe T. The Solar-C Mission. Proc. of SPIE. 9143. “Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave”, Session “Solar System”. Abstract N 91431O (2014) [in English].
24. Zimovets I., Zelenyi L., Kuznetsov V., and the IHP Team. Current state of the Interhelioprobe mission. 14 th European Solar Physics Meeting. Session 1 “New and Upcoming Heliospheric Observational and Data Assimilation Facilities ”: Programme and Abstract Book. P.12 (2014).