Dynamic instability of rockets fairings

1Avramov, KV, 1Chernobryvko, MV, 2Batutina, TYa., 3Degtyarenko, PG, 3Tonkonozhenko, AM
1A. N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
3Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(1):10–14
Section: Spacecraft dynamics and control
Publication Language: Russian

: Aeroelastic vibrations of rockets fairing, which are parabolic or conic shells, are considered. These shells are faded-in by stringers and rings. The dynamic instability of such structures in supersonic gas stream is analyzed.

Keywords: ring-stiffened conical shells, shell space mode, supersonic gas stream, vibrations of rocket deflector

1. Avramov K.V. Aeroelastic interaction of plates with a three-dimensional inviscid potential gas flow. Reports of the National Academy of Sciences of Ukraine,  No.9, 57—63 (2013) [in Russian].

2. Avramov K. V., Mihlin Ju. V. Nonlinear dynamics of elastic systems (Nelinejnaja dinamika uprugih system).  704 p. (SEC « Regular and Chaotic Dynamics », Moscow — Izhevsk, 2010) [in Russian].

3. Avramov K. V., Morachkovski O.K., Tonkonogenko A.M. et al. Semi-analytical finite element method for deflected mode of ribbed cylindrical shells. Journal of mechanical engineering. 17 (1), 33—41 (2014) [in Russian].

4. Avramov K.V., Morachkovski O.K., Tonkonogenko A.M. et al. Numerical analysis of rockets tanks breaking loads. Aerospace technic and technology, No.5(112), 40—46 (2014) [in Russian].

5.  Bochkarev S. A., Matveyenko V. P. Panel flutter of rotating circular shells in a supersonic gas flow. Computational Continuum  Mechanics, No.3, 25—33 (2008) [in Russian].

6. Chernobryvko M.V., Avramov K.V. Natural vibrations of parabolic shells. Mat. metody ta fiz.-meh.polja, 57 (3), 78–85 (2014) [in Russian].

7. Chernobryvko M. V., Avramov K. V., Romanenko V. N. et al. Dynamic instability of rockets deflectors in flight. Journal of mechanical engineering.  17 (2), 9—16 (2014) [in Russian].

8. Avramov K. V., Pierre C., Shyriaieva N. Flexural-flexural-torsional nonlinear vibrations of pre-twisted rotating beams with asymmetric cross-sections.  J. Vibrat. and Contr. 13, 329—364 (2007).

9. Avramov K. V., Strel’nikova E. A., Pierre C. Resonant many-mode periodic and chaotic self-sustained aeroelastic vibrations of cantilever plates with geometrical nonlinearities in incompressible flow. Nonlin. Dyn.  70, 1335—1354 ( 2012).

10. Breslavsky I. D., Strel’nikova E. A., Avramov K. V. Dynamics of Shallow Shells with Geometrical Nonlinearity Interacting with Fluid.  Comput. and Struct. 89, 496—506 (2011).

11. Chernobryvko M. V., Avramov K. V., Romanenko V. N., et al. Free linear vibrations of parabolic shells. Meccanica49, 14—21 (2014).

12. Kochurov R., Avramov K. V. On effect of initial imperfections on parametric vibrations of cylindrical shells with geometrical non-linearity.  Int. J. Solids and Struct.  49, 537—545 (2012).