The multiposition diagnostics of midlatitude ionosphere using the data of regional network of GNSS receivers

1Zanimonskiy, Ye.M, 1Lytvynenko, LM, 1Yampolski, Yu.M, 1Lisachenko, VN, 1Paznukhov, AV, 1Kolenov, DYu., 1Koloskov, AA
1Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(1):78–83
Section: Space geodynamics and geoinformatics
Publication Language: Russian

The possibility of constructing regional maps of the ionosphere TEC with a spatial resolution of 50—100 kilometers according to the GNSS network base stations is justified. The developed technique allowed detecting the presence of stationary irregularities in the mid-latitude ionosphere, with a spatial scale of about three hundred kilometers and time of existence about two hours

Keywords: GNSS, ionospheric irregularities, maps

1. Andreeva E.S., Kalashnikova S.A., Kunitsyn V.E., Nesterov I.A. Studying high-latitude ionosphere using UV-spectrometry, Global Ionospheric Maps and high-orbital radiotomography.  Current problems in remote sensing of the Earth from space, 10 (1),  103—111 (2013) [in Russian].
2. Balan A. Ju., Gorb A. I., Efremenko P. E., Nesterovich A. G. The advantages of using GPS-network base stations in Kharkiv region (Preimushhestva ispol'zovanija seti GPS–bazovyh stancij v Har'kovskoj oblasti). Retrieved from http:// www. pryroda. gov. ua/ ua/ index. php?newsid=1233 [in Russian].
3. Galushko V.G., Sopin A.A., and Yampolski Y.M.  Diurnal variations of the parameters of ionospheric disturbances as derived from data of TEC measurements over the Antarctic peninsula.  Radio Physics and Radio Astronomy.  17 (3), 218—233 (2012) [in Russian].
4. Zanimonskij E. M., Gorb A. I., Lisachenko V. N. et al. Opportunities and challenges of using local ionospheric maps according to GNSS.  Proceedings of 5th International radio electronic forum (IREF' 2014), T. 1, 199—201 (Kharkiv, 2014) [in Russian].
5. Kunitsyn V. E., Tereshchenko E. D., Andreeva E. S., Nesterov I. A. Satellite radio probing and the radio tomography of the ionosphere. Phys. Usp.. 180 (5), 548—553 (2010) [in Russian].
6. Yankiv-Vitkovska L.M.  A procedure for the determination of ionosphere parameters on the basis of the GNSS network in Western Ukraine.  Space science and technology, 19 (6), 47—52 (2013) [in Ukrainian].
7. Bergeot N., Chevalier J-M., Bruyninx C., et al. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data.  J. Space Weather Space Clim. 4, A31 (2014).
8. Bosy J., Oruba A., Graszka W., et al. ASG-EUPOS densification of EUREF permanent network on the territory of Poland.  Repts Geod2(85), 105—112 (2008).
9. Fox M. W., Mendillo M., Klobuchar J. A. Ionospheric equivalent slab thickness and its modeling applications. Radio Sci26, 429—438 (1991).
10. Hernández-Pajares M., Juan J. M., Sanz J., et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998.  J. Geodesy.  83, 263—275 (2009)
DOI 10.1007/s00190-008-0266-1.
11. Krypiak-Gregorzcyk A., Wielgosz P., Gosciewski D., Paziewski J. Validation of approximation techniques for local TEC mapping.  Acta Geodyn. Geomater10, N 3 (171), P. 275—283 (2013).
12. Krypiak-Gregorzcyk A., Zanimonskiy Y. M., Sopin A. A., et al. Accuracy analysis of local TEC maps derived using limited number of GNSS stations.  EUREF 2014 Symp.: Abstracts book.  P. 23 (Vilnius, Lithuania, 2014).
13. Smith D. A., Araujo-Pradere E. A., Minter C., Fuller-Rowell T. A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere.  Radio Sci43, RS6008 (2008)
14. Stoll C., Schluter S., Heise S., et al. A GPS based three-dimensional ionospheric imaging tool: Process and assessment.  Adv. Space Res38 (11), 2313—2317 (2006).
15. Wielgosz P., Kashani I., Grejner-Brzezinska D., et al. Regional ionosphere modeling using smoothed pseudoranges.  5th Internat. Antarctic Geodesy Symp. (AGS’03), Lviv, Ukraine, 15—17 Sept. 2003, SCAR Report N 23, P. 37—41 (Cambridge, 2005).