On the precision estimates of Earth gravitation field models

1Choliy, VYa.
1Taras Shevchenko National University of Kyiv, Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(1):70–76
https://doi.org/10.15407/knit2015.01.070
Publication Language: Ukrainian
Abstract: 

In the article the results of the precision analysis of the geopotential models, collected by the scientific community and recommended for geodynamic programs is presented. EIGEN model line is analysed too with the purpose to understand how the data from new space missions influences the models precision

Keywords: geodynamic models, gravitation field, precision estimates
References: 

1. Belikov M. V., Tajbatorov K. A. Efficient algorithm of computation of the Earth’s gravitational potential and its first order derivatives for solving the artificial satellite problems. Kinematics Phys. Celestial Bodies, 6 (2), 24—32 (1990) [in Russian].

2. Bolotin S. L., Lytvyn S. O. Comparison of the combined catalogues RSC(GAOUA)05 C 03 and RSC(PUL)06 C 02 with the current realization of the  International  Celestial Reference Frame (ICRF). Kinematics Phys. Celestial Bodies, 26 (1), 31—38 (2010) [in Ukrainian].

3. Zhaborovskyi V. P. Quantitative analysis of atmospheric density  models  applicable to  the determination of artificial  satellite deceleration.  Kinematics Phys. Celestial Bodies, 30 (6), 71—78 (2014) [in Ukrainian].

4. Choliy V. Ya.  On theoretical background of the extended Helmert transform.  Bulletin of the Ukrainian Centre of determination of the Earth Orientation Parameters. 8, 87—90 (2013) [in Ukrainian].

5. Choliy V. Ya.  On the  precision estimates of fundamental planetary ephemerides.  Kinematics Phys. Celestial Bodies, 30 (6), 66—70 (2014) [in Ukrainian].

6. Bruinsma S. L., Marty J. C., Balmino G., et al. GOCE gravity field recovery by means of the direct numerical method.  ESA Living Planet Symposium 2010, Bergen, June 27 — July 2. (Bergen, Norway, 2010).

7. Choliy V. Ya. On the extension of Helmert transform.  Advs Astron. and Space Phys. 4,  15—19 (2014).

8. Choliy V., Zhaborovsky V. KyivGeodynamics++: software for processing satellite laser ranging data. Advs Astron. and Space Phys. 1, 96—98 (2011) .

9. Cunningham L. On the computation of the spherical harmonic terms needed during the numerical integration of the orbital motion of an artificial satellites. Cel. Mech. Dyn. Astron.   2, 207—216 (1970).

10. Flechtner F., Dahle C., Neumayer K., et al. The release 04 CHAMP and GRACE EIGEN gravity field models.  System Earth via geodetic-geophysical space techniques, Eds F. Flechtner, T. Gruber, A. Guntner, et al. P. 41—58 (Springer, 2010), doi: 978-3-642-10228-8.

11. Foerste C., Flechtner F., Schmidt R., et al. A New high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/ gravimetry surface gravity data.  European Geosciences Union General Assembly: Book of abstracts. EGU 05-A-04561 (2005).

12. Foerste C., Flechtner F., Schmidt R., et al. A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface gravity data.  Geophys. Res. Abstracts. 8, 03462, Poster, EGU GA 2006, (Vienna, Austria, 02−07 April 2006).

13. Foerste Ch., Flechtner F., Schmidt R., et al. EIGEN-GL05C — A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation.  Geophys. Res. Abstracts. 10, EGU2008-A-03426 (2008).

14. Goiginger H., Hock E., Rieser D., et al. The combined satellite-only global gravity field model GOCO02S. European Geosciences Union General Assembly: Book of abstracts.   EGU 2011-10571. (2011).

15. IERS Conventions (2010) / Eds G. Petit, B. Luzum.  IERS TN 36, 160 p. (Observatoire de Paris, Paris, 2010).

16. Jaggi A., Meyer U., Beutler G., et al. Status of gravity field model computed from GRACE field recovery using the celestial mechanics approach.  Geodesy for Planet Earth / Eds S. Venyon, M. Pacino, 136, 161—170 (Springer, Berlin, 2012).

17. Lemoine F. G., Kenyon S. C., Factor J. K., et al. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96.  NASA Technical Paper NASA/ TP1998206861.  (Goddard Space Flight Center, Greenbelt, USA, 1998).

18. Marsh J. G., Lerch F. J., Putney B. H., et al. The GEM-T2 Gravitational Model.  J. Geophys. Res. 95 (B13), 22043—22071 (1990).

19. McCarthy D., Petit G. (eds.) IERS Conventions (2003). IERS TN 32.  127 p. (Observatoire de Paris, Paris, 2004).

20. Pavlis N., Holmes S., Kenyon S., Factor J. An Earth Gravitational Model to Degree 2160: EGM2008.  European Geosciences Union General Assembly: Book of abstracts. EGU 2008-A-01891 (2008).

21. Prange L. Global gravity field determination using the GPS measurements made onboard the low Earth orbiting satellite CHAMP.  Geod.-geophys. Arb. Schweiz. 81, 232 p. (2011).

22. Reigber Ch., Balmino G., Moynot B., Mueller H.  The GRIM3 Earth Gravity Field Model.  Manuscripta Geodaetica8, 93—138 (1983).

23. Reigber Ch., Balmino G., Schwintzer P., et al. A high quality global gravity field model from CHAMP GPS tracking data and Accelerometry (EIGEN-1S).   Geophys. Res. Letter.  29. doi: 10.1029/2002GL015064 (2002).

24. Reigber Ch., Balmino G., Schwintzer P., et al. Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP.  Space Sci. Revs.  29, 55—66 (2003).

25. Reigber Ch., Jochmann H., Wunsch J., et al. Earth gravity field and seasonal variability from CHAMP.  Earth observation with CHAMP — Results from three years in orbit. Eds C. Reigber, H. Luhr, P. Schwintzer, J. Wickert.  P. 25—30 (Berlin:  Springer, 2004).

26. Reigber Ch., Jochmann H., Wunsch J., et al. Earth gravity field and seasonal variability from CHAMP.  Earth observation with CHAMP — Results from three years in orbit / Eds C. Reigber, H. Luhr, P. Schwintzer, J. Wickert.   P. 25—30 (Berlin:  Springer, 2004).

27. Reigber Ch., Schmidt R., Flechtner F., et al. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S.  J. Geodyn. 39,  1—10 (2005).

28. Reigber Ch., Schwintzer P., Neumayer K., et al. The CHAMP-only Earth Gravity Field Model EIGEN-2.  Advs Space Res.  31 (8), 1883—1888 (2003), doi: 10.1016/S0273-1177(03)00162-5.

29. Reigber Ch., Schwintzer P., Stubenvoll R., et al. A High resolution global gravity field model combining CHAMP and GRACE satellite mission and surface data: EIGEN-CG01C.  Scientific technical report STR06/07. (GeoForschungsZentrum Potsdam, 2006).

30. Sosnica K. Determination of precise satellite orbits and geodetic parameters using satellite laser ranging: Dissertation, 253 p. (AIUB, 2014).

31. Tapley B. D., Watkins M., Ries J., et al. The joint gravity model 3.  J. Geophys. Res.   101, 28029—28049 (1996).

32. Tapley B. D., Ries J., Bettadpur S., et al. The GGM03 mean earth gravity model from GRACE.  Eos Trans. AGU 88(52), Fall Meet. Suppl.  Abstract G42A-03 (2007).

33. Tkachuk V. V., Choliy V. Ya. On the comparison of fundamental numerical ephemerides.  Advs Astron. and Space Phys.   3, 141—144 (2013).