Ground-space experiment for artificial acoustic modification of ionosphere. Some preliminary results

1Cheremnykh, OK, 2Klimov, SI, 3Korepanov, VE, 4Koshovy, VV, 3Melnik, МО, 4Ivantyshyn, ОL, 3Mezentsev, VP, 3Nogach, RТ, 5Rapoport, Yu.G, 1Selivanov, Yu.A, 6Semenov, LP
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Space Research Institute of the Russian AS, Moscow, Russia
3L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine
4Karpenko Physico-Mechanical Institute of the National Academy of Science of Ukraine, L'viv, Ukraine
5Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
6State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2014, 20 ;(6):60-74
Section: Space and Atmospheric Physics
Publication Language: Russian

Ground-Space experiment to investigate the impact of artificial acoustic radiation on the ionosphere was conducted on November 28, 2013. In experiment, there were used “Chibis-M” microsatellite by Institute for Space Research of Russian Academy of Sciences, powerful stationary acoustic emitter by Lviv Centre of Space Research Institute of National Academy of Sciences and State Space Agency of Ukraine and decameter radiotelescope URAN-3 by Institute of Physics and Mechanics of National Academy of Sciences of Ukraine. During the experiment, 5 sessions of registering magnetic and electric field variations on board of the microsatellite were conducted at the time of flight near the location of the acoustic emitter. The results of the preliminary analysis of the experiment outcome are presented.

Keywords: acoustic disturbances, ionosphere, radiotransparency

1. Gokhberg M. B., Shalimov S. L. Lithosphere–ionosphere relation and its modeling.  Russian Journal of Earth Sciences,  2(2), 95—108 (2000) [in Russian].

2. Remote sensing of weak radio acoustic-ionospheric disturbances using radio physical systems based telescope URAN-3: Experimental and theoretical studies decametre galactic and extragalactic radio sources by interferometry: (Report Sci.-Tech. Res.). Physics-Mechanical Institute NAS Ukraine, No. 0197U003373,  P. 223—330 (Lviv, 1999).  [in Ukrainian].

3. Dosyn D. G., Ivantyshyn O. L., Koshovyj V. V., Lozyns'kyj A. B. Ionospheric-diagnostic systemURAN-3. Information extraction and processing, Issue 11(87), 3—7 (1997) [in Ukrainian].

4. Research and development of methods to restore image of radio and radio acoustics to study the effects of solar acoustics in decameter wave processes in the ionosphere and the troposphere: (Report Sci.-Tech. Res.). Physics-Mechanical Institute NAS Ukraine.  370 p. (Lviv, 1991) [in Russian].

5. Ivantyshyn O.-М.L. Informative measuring complex on the basis of the radiotelescope URAN - 3 for investigations of the weak acousto-ionospheric disturbances: Extended abstract of candidate’s thesis.  (Karpenko Physiko-Mechanical Institute of National Academy of Sciences of Ukraine, Lviv, 2007) [in Ukrainian].

6. Koshovy V. V.  Radiophysical and radioastronomical diagnostics of ionospheric effects induced by a ground-based infrasonic transmitter (preliminary results).  Radiophysics and Quantum Electronics, 42(8), 785—798 (1999) [in Russian].

7. Koshovyj V. V., Ivantyshyn O. L. Research of the acoustic artificial ionospheric disturbances by the radio astronomical method. Information extraction and processing, Issue 13(89), 21—25 (1999) [in Ukrainian].

8. Koshovyi V. V., Soroka S. О. Acoustic disturbance of ionospheric plasma by a ground-based radiator.  Space science and technology, 4 (5/6), 3—17 (1998) [in Ukrainian].

9. Krasnov V. М.  Propagation characteristics of weak blast waves in inhomogeneous atmosphere.  Acoustical Physics,  39(3), 498—504 (1993) [in Russian].

10. Krasnov V.M., Kuleshov Yu.V. Variation of Infrasonic Signal Spectrum during Wave Propagation from Earth’s Surface to Ionospheric Altitudes.  Acoustical Physics,  60(1), 21—30 (2014) [in Russian].

11. Negoda A.A., Soroka S.A. Prospects in the investigations of the atmosphere and ionosphere with the use of artificial acoustic influence.  Space science and technology, 5 (2/3), 3—12 (1999) [in Russian].

  12. Novikov D.I., Klimov S.I., Korepanov V.E., et al. Magnetic-wave instrumentsof microsatellite Chibis-M for the studyof the electromagnetic parametersof space weather.Mission «Chibis-M»: Proceedings. Ser. «Mechanics, management and Informatics»;  Nazirov P. P. (Ed.), 78—89 (ISR RAN, Moscow, 2009) Retrieved from [in Russian].

13. Rudenko O.V. Nonlinear sawtooth-shaped waves.  Phys. Usp.  165 (9), 1011—1036 (1995) [in Russian].

14. Ivantyshyn O.L., Koshovyi V.V., Lozynskyi A.B., Nazarchuk Z.T., Romanyshyn I.M., Soroka S.O. Method for evaluation of infrasonic situation on surface of earth on basis of acoustic-electromagnetic monitoring of ionosphere.  Pat. 59531, Ukraine, MPK G01W 1/08, No. u201010307; published 25.05.2011, Bull. 10, 4 p.  [in Ukrainian].

15. Cheremnykh O. K., Selivanov Yu. A., Zakharov I. V. The influence of compressibility and nonisothermality of the atmosphere on the propagation of acousto-gravity waves. Kosm. Nauka tehnol., 16 (1), 9—19 (2010) [in Russian].

16. Aburjania G. D., Machabeli G. Z. Generation of electromagnetic perturbations by acoustic waves in the ionosphere.  J. Geophys. Res.   103 (A5), 9441—9447 (1998).

17. Aramyan A. R., Galechyan G. A., Harutyunyan G. G., et al. Modeling of interaction of acoustic waves with Ionosphere.  IEЕЕ Trans. Plasma Sci.   36 (1), 305—309 (2008).

18. Aramyan A. R., Galechyan G. A., Harutunyan G. G., Manukyan G. V. Transformation of acoustic waves in upper atmosphere.  Laser Phys.   20(1), 298—301 (2010).

19. Blanc E. Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary.  Ann. geophys.   N 3, 673—688 (1985).

20. Donn W. L., Rind D. Natural infrasound as an atmospheric probe.  Geophys. J. Roy. Astron. Soc.  N 26, 111—133 (1971).

21. Drobzheva Ya. V., Krasnov V. M. The spatial structure of the acoustic wave field generated in the atmosphere by a point explosion.  Acoustical Phys.  47(5), 556—564 (2001).

22. Galperin Yu., Hayakawa M. On a possibility of parametric amplifier in the stratosphere-mesosphere suggested by active MASSA experiments with the AUREOL-3 satellite.  Earth Planets Space.  N 50, 827—832 (1998).

23. Garces M., Drob D. P., Picone J. M. A theoretical study of the effect of geomagnetic fluctuations and solar tides on the propagation of infrasonic waves in the upper atmosphere.  Geophys. J. Int.   N 148, 77—87 (2002).

24. Gotinyan O. E., Ivchenko V. V., Rapoport Yu. G. Model of the internal gravity waves excited by lithospheric greenhouse effect gases.  Kosm. Nauka tehnol.. Suppl7(2), 26—33 (2001).

25. Grimalsky V. V., Koshevaya S. V., Perez-Enriquez R., Kotsarenko A. N. Nonlinear excitation of ULF atmosphereionosphere waves and magnetic perturbations caused by ELF seismic acoustic bursts.  Phys. scr67(3), 453—456 (2003).

26. Hines C. O. Internal atmospheric gravity waves at ionospheric heights.  Can. J. Phys.   38, 1441— 1481 (1960).

27. Koshevaya S. V., Grimalsky V. V., Burlak G. N., et al. Magnetic perturbations excited by seismic waves.  Phys. scr.   64(2), 172—176 (2001).

28. Koshevaya S. V., Grimalsky V. V., Siquieros-Alatorre J., et al. Acoustic and acousto-gravity wave pulses caused by sources of seismic origin.  Phys. scr.   70(1), 72—78 (2004).

29. Koshovy V. V., Ivantyshyn O. L. Research of the artificial acousto-ionosperic disturbances.  XXVIth General Assembly of the International Union of Radio Science: Abstracts, August 13—21, 1999, Toronto, Canada. P. 506 (University of Toronto, Toronto, 1999).

30. Koshovyy V., Nazarchuk Z., Romanyshyn I., et al. Acousto-electromagnetic investigations of an acoustical channel of the lithosphere-ionosphere interaction.  XXVIII General Assembly of International Union of Radio Science (URSI): Proceedings, October 23—29, 2005, New Delhi, India, 4 p. (New Delhi, 2005).

31. Kotsarenko N. Ya., Pérez Enríquez R., Koshevaya S. V. Excitation of plasma waves in the ionosphere caused by atmospheric acoustic waves.  Astrophys. and Space Sci.  246(2), 211—217 (1996).

32. Kotsarenko N. Ya., Soroka S. A., Koshevaya S. V., Koshovyy V. V. Increase of the transparency of the ionosphere for cosmic radiowaves caused by a low frequency wave.  Phys. scr.  59, 174—181 (1999).

33. Laštovička Ja. Forcing of the ionosphere by waves from below.  J. Atmos. and Solar-Terr. Phys.  N 68, 479—497 (2006).

34. Mityakov N. A. Parametric acoustic antenna in the atmosphere.  Radiophys. and Quant. Electron.   49(7), 514—519 (2006).

35. Naugolnykh K. A., Rybak S. A. Sound propagation in an unstable atmospheric layer.  Acoustical Phys. 53(3), 417—420 (2007).

36. Ostrovsky L. A. Ionospheric effects of ground motion: The roles of magnetic field and nonlinearity.  J. Atmos. and Solar-Terr. Phys.   N 70, 1273—1280 (2008).

37. Pilipenko V. A., Fedorov E. N. Modulation of the total electron content in the ionosphere by geomagnetic pulsations.  Geomagnetism and Aeronomy (eng. translation).  34(4), 516—519 (1995).

38. Pokhotelov O. A., Parrot M., Fedorov E. N., et al. Response of the ionosphere to natural and man-made acoustic sources.  Ann. Geophys.   13(11), 1197—1210 (1995).

39. Rapoport V., Bespalov P., Mityakov N. A., et al. Feasibility study of ionospheric perturbations triggered by monochromatic infrasonic waves emitted with a ground-based experiment.  J. Atmos. and Solar-Terr. Phys.   66(12), 1011—1017 (2004).

40. Rapoport Yu. G., Gotynyan O. E., Ivchenko V. M., et al. Effect of acoustic-gravity wave of the lithospheric origin on the ionospheric F region before earthquakes.  Phys. Chem. Earth.   29, 607—616 (2004).

41. Rapoport Yu. G., Hayakawa M., Gotynyan O. E., et al. Stable and unstable plasma perturbations in the ionospheric F region, caused by spatial packet of atmospheric gravity waves.  Phys. Chem. Earth.   34, 508—515 (2009).