Power line radiation in the near-Earth space

1Dudkin, DF, 1Pronenko, VO, 1Korepanov, VE, 2Klimov, SI
1L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine
2Space Research Institute of the Russian AS, Moscow, Russia
Kosm. nauka tehnol. 2014, 20 ;(5):27–34
https://doi.org/10.15407/knit2014.05.027
Section: Space and Atmospheric Physics
Publication Language: Ukrainian
Abstract: 

We analyze the ionospheric phenomenon called as the power line harmonic radiation (PLHR) and observed onboard some low-Earth orbiting satellites. The obtained experimental data confirm the necessity of the permanent satellite monitoring of ionospheric technogenic perturbations for the objective estimation and prognosis of space weather. It is supposed that the further development of such a monitoring will allow one to create a map of electromagnetic contamination of near-Earth space both in local and global scales.

Keywords: electromagnetic contamination, ionosphere, power lines
References: 

1. Vladimirsky B.M. Cosmic weather, climate and social phenomena.  Izv. Krym. Astrofiz. Obs., 107(1), 189—209 (2011) [in Russian].
2. Zelenyi L.M., Gurevich A.V., Klimov S.I., et al. The academic Chibis-M microsatellite.  Cosmic Research, 52 (1), 1—13 (2014) [in Russian]. 
https://doi.org/10.1134/s0010952514010110
3. Klimov S. I., Vavilov D. I., Gotlib V. M.et al. The study of ionospheric electromagnetic activity on microsatellite "Chibis-M".  Fizika plazmy v Solnechnoj sisteme: Sb. tez. 8-j ezhegod. konf.,  P. 61 (Moscow, 2013) [in Russian].
4. Koloskov A.V., Yampolski Yu.M.  Observations of Radiation from North American Power Mains in Antarctica.  Radio Physics and Radio Astronomy.  14 (4), 367—376 (2009) [in Russian].
5. Molchanov O. A. Low-frequency waves and induced radiation in the near-Earth plasma 224 p. (Nauka, Moscow, 1985) [in Russian].
6. Parnowski A.S.,Yermolayev Yu.I., Zhuk I.T. Space weather: The history of research and forecasting. Kosm. nauka tehnol., 16 (1), 90—99 (2010) [in Russian].
https://doi.org/10.15407/knit2010.01.090
7. Barbé K., Pintelon R., Schoukens J. Welch method revisited: nonparametric power spectrum estimation via circular overlap.  IEEE Trans. Signal Process.  58, 553—565 (2010). 
https://doi.org/10.1109/TSP.2009.2031724
8. Bothmer V., Daglis I. A. Space weather. Physics and effects.  (Series: Springer Praxis Books. Subseries: Environmental Sciences).  Vol. 38, 438 p. (Springer, 2007). 
https://doi.org/10.1007/978-3-540-34578-7
9. Bullough K., Kaiser R., Strangeways H. J. Unintentional man-made modification effects in the magnetosphere.  J. Atmos. and Terr. Phys.  47 (12), 1211— 1223 (1985).
https://doi.org/10.1016/0021-9169(85)90089-3
10. Dudkin F., Korepanov V., Lizunov G. Experiment VARIANT — first results from wave probe.  Adv. Space Res.  43 (12), 1904—1909 (2009). 
https://doi.org/10.1016/j.asr.2009.03.018
11. Dudkin D., Pilipenko V., Korepanov V., et al. Electric field signatures of the IAR and Schumann resonance in the upper ionosphere detected by Chibis-M microsatellite.  J. Atmos. and Solar-Terr. Phys.  117, 81—87 (2014). 
https://doi.org/10.1016/j.jastp.2014.05.013
12. Francisco C. M. Connecting renewable power plant to the Brazilian transmission power system; The institute of Brazilian business and public management issues. The Minerva program. 37 p. (Washington, DC, USA, 2012).
13. Helliwell R. A., Katsurakis J. P., Bell T. F., Raghuram R. VLF line radiation in the Earth’s magnetosphere and its association with power system radiation.  J. Geophys. Res.  80 (31), 4249—4258 (1975).
https://doi.org/10.1029/JA080i031p04249 
14. Impactsof severe space weather on the electric grid.  Report JSR-11-320, November, 2011.  101 p. (The MITRE Corporation, McLean, Virginia, 2011).
15. Journal of Space Weather and Space Climate, Open access journal, EDP Sciences, http://www.swsc-journal.org/
16. Knipp D.Understanding Space Weather and the Physics behind it.  744 p. (McGraw-Hill, 2011).
17. Luette P., Park C. G., Helliwell R. A.Longitudinal variations of very-low-frequency chorus activity in the magnetosphere: Evidence of excitation by electrical power transmission lines.  Geophys. Res. Lett. 4 (7), 275—278 (1977). 
https://doi.org/10.1029/GL004i007p00275 
18. Molchanov O. A., Hayakawa M., Rafalsky V. A. Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere and magnetosphere.  J. Geophys. Res100, 1691—1712 (1995). 
https://doi.org/10.1029/94JA02524 
19. Moldwin M. An Introduction to Space Weather.  156 p. (Cambridge Univ. Press, New York, 2008). 
https://doi.org/10.1017/CBO9780511801365
20. Nemec F., Parrot M., Santolik O.Influence of power line harmonic radiation on the VLF wave activity in the upper ionosphere: Is it capable to trigger new emissions?  J. Geophys. Res.  115, P. A11301 (2010) .
https://doi.org/10.1029/2010JA015718
21. Nemec F., Santolic O., Parrot M., Berthelier J. J. Comparison of magnetospheric line radiation and power line harmonic radiation: A systematic survey using the DEMETER spacecraft.  J. Geophys. Res.  112, P. A04301 (2007).
https://doi.org/10.1029/2006JA012134
22. Nemec F., Santolic O., Parrot M., Bortnik J. Power line harmonic radiation observed by satellite: Properties and propagation through the ionosphere.  J. Geophys. Res.  113, P. A08317 (2008). 
https://doi.org/10.1029/2008JA013184
23. Park C. G.VLF wave activity during a magnetic storm: A case study of the role of power line radiation.  J. Geophys. Res.  82(22), 3251—3260 (1977).
https://doi.org/10.1029/JA082i022p03251
24. Parrot M. World map of ELF/VLF emissions as observed by low-orbiting satellite.  Ann. Geophys8, 135—145 (1990).
25. Parrot M., Zaslavski Y.Physical mechanisms of manmade influences on the magnetosphere.  Surv. Geophys. 17(1), 67—100 (1996). 
https://doi.org/10.1007/BF01904475
26. Kikuchi H. (Ed.) Power line radiation and its coupling to the ionosphere and magnetosphere. 208 p. (Reidel, 1983).
https://doi.org/10.1007/978-94-009-7063-2
27. Report of the Assessment Committee for the National Space Weather Program; Office of the Federal Coordinator for Meteorological Services and Supporting Research. 118 p. (Silver Spring, MD (USA), 2006).
28. Rothkaehl H., Parrot M. Electromagnetic emissions detected in the topside ionosphere related to the human activity.  J. Atmos. and Solar-Terr. Phys.  67 (8—9), 821—828 (2005). 
https://doi.org/10.1016/j.jastp.2005.02.003
29. Row R. V., Mentzoni M. H. On D-region Electron Heating by a Low-Frequency Terrestrial Line Current With Ground Return.  Radio Sci. 7(11), 1061—1066 (1972).
https://doi.org/10.1029/RS007i011p01061
30. Simões F., Pfaff R., Freudenreich H. Satellite observations of Schumann resonances in the Earth’s ionosphere.  Geophys. Res. Lett.  38, P. L22101 (2011). 
https://doi.org/10.1029/2011GL049668
31. Space Weather, Its impact on Earth and implication for business;  Lloyd’s 360 Risk Insight report. 36 p. (London, Great Britain, 2010).
32. Surkov V. V., Nosikova N. S., Plyasov A. A., et al. Penetration of Schumann resonances into the upper ionosphere. J. Atmos. and Solar-Terr. Phys., 65—74 (2013). 
https://doi.org/10.1016/j.jastp.2013.02.015