Reprocessing of GPS observations at permanent stations of the regional network for GPS weeks 935—1399

1Ishchenko, MV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2014, 20 ;(3):41-48
https://doi.org/10.15407/knit2014.03.041
Section: Space Geoinformatics and Geodesy
Publication Language: Russian
Abstract: 

We present our results of reprocessing of archival GPS observations which was performed at the GNSS data analysis centre of the MAO NAS of Ukraine for the observation period from 12 December 1997 to 4 November 2006 (464 GPS weeks) for 31 GPS stations located in the Eastern Europe (12 of them are located on the territory of Ukraine). Homogeneous coordinate solution in the IGS05 reference frame and values of zenith tropospheric refraction for the GPS weeks 935—1399 which are free from effects caused by changes in processing procedures, models, a priori data, and software are obtained for the first time.

Keywords: coordinate values, GPS observations, zenith tropospheric refraction
References: 

1. Khoda O. A. The processing of EPN benchmark test campaign at the GNSS data analysis centre of the Main Astronomical Observatory. Kosm. nauka tehnol., 18 (4), 59 —65 (2012) [in Russian].
https://doi.org/10.15407/knit2012.04.059
2. Argus D., Gordon R. No-net rotation model of current plate velocities incorporating plate motion model Nuvel-1. Geophys. Res. Lett.   18, 2038—2042 (1991). 
https://doi.org/10.1029/91GL01532
3. Dach R., Hugentobler U., Fridez P., Meindl M. Bernese GPS Software version 5.0.  612 p. (Berne, Astronomical Institute, University of Berne, 2007).
4. Hofmann-Wellenhof B., Lichtenegger H., Walse E. GNSS — Global Navigation Satellite System. 343 p. (Spinger, Wien, NewYork, 2008).
5. Jefferson D., Heflin D., Muellerschoen R. Examining the C1-P1 pseudorange bias. GPS Solutions,  N 4(4), P. 25—30 (2001).
6. Lyard F., Lefvre F., Letellier T., Francis O.Modeling the global ocean tides: a modern insight from FES2004. Ocean Dynamics, N 56,  394—415 (2006).
https://doi.org/10.1007/s10236-006-0086-x
7. McCarthy D., Petit G. IERS Conventions.  IERS Technical Note 32. (Bundesamt fur Kartographie und Geodëasie, Franfkurt am Main, 2004).
8. Mervart L. Ambiguity resolution techniques in geodetic and geodynamic applications of the Global Positioning System.  Geodätisch geophysikalische Arbeiten in der Schweiz, Band 53, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, 155 p. (Zürich,1995).
9. Niell A. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res.  N 101, 3227—3246 (1996). 
https://doi.org/10.1029/95JB03048
10. Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites.  The use of artificial satellites for Geodesy, Vol. 15 of Geophysics Monogram Series, AGU,  P. 244—251 (1972).
11. Schaer S. Stochastische Ionospharenmodellierung beim Rapid Static Positioning GPS:  Diplomarbeit, (Astronomisches Institut, Universitat Bern, Switzerland, 1994) [in German].
12. Standish E. The Observational basis for JPL’s DE200, the planetary ephemerides of the astronomical almanac.  Astron. and Astrophys.  233 (1), 252— 271 (1990). 
http://adsabs.harvard.edu/abs/1990A%26A...233..252S
13. Steigenberg P., Rothacher M., Fritsche M., Rulke A., Dietrich R. Quality of reprocessed GPS satellite orbits. J. Geodesy, 83 (3-4), 241—248 (2009). 
https://doi.org/10.1007/s00190-008-0228-7