Dynamic interaction of a spacecraft with rarefied plasma in motion under a “magnetic sail”

1Shuvalov, VA, 1Tokmak, NA, 2Tsokur, AG, 3Kochubey, GS
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the NAS of Ukraine and SSA of Ukraine, Dnipropetrovsk, Ukraine
3Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2014, 20 ;(3):14-21
Section: Spacecrafts and Payloads
Publication Language: Russian

It is shown that the change in the relative orientation of the vectors of own magnetic field and plasma flow velocity is an effective means to control the dynamic interaction in the “spacecraft — plasma” system. It allows one to achieve the mode of interaction with non-zero aerodynamic quality and, as a result, regimes of deceleration and acceleration of “magnetized”body in the hypersonic flow of rarefied plasma.

Keywords: interaction in the spacecraft-plasma system

1. Bitjurin V. A., Bocharov A. N. Magnetohydrodynamic interaction in hypersonic flow around a blunt body airflow.  Izv. RAN. Meh. zhidkosti i gaza.  N5, 188—203 (2006). [in Russian].
2. Bityurin V. A., Bocharov A. N. Ground MHD experiments in hypersonic flows.  High Temperature48(6), 916—923 (2010) [in Russian]. 
3. Veselovskij I. S. The solar wind and heliosphere magnetic field Model' kosmosa — 2007,  T. 1, 314—346 (Knizhnyj dom Universitet, Moscow, 2007) [in Russian].
4. Vud G. P. Electrical and electromagnetic braking of satellite in Earth's upper atmosphere.  Gazovaja dinamika kosmicheskih apparatov,  258—277 (Mir, Moscow, 1965) [in Russian].
5. Gurevich A. V., Moskalenko A. M. On the braking of bodies moving in a rarefied plasma.  Issledovanija kosmicheskogo prostranstva, 241—254 (Nauka, Moscow, 1965) [in Russian].
6. Gurevich A. V., Shvarcburg A. B. Nonlinear theory of radio wave propagation in the ionosphere, 272 p. (Nauka, Moscow, 1973) [in Russian].
7. Koshmarov Ju. A., Ryzhov Ju. A. Applied rarefied gas dynamics, 184 p. (Mashinostroenie, Moscow, 1977) [in Russian].
8. Lyons L.R., Williams D.J. Quantitative Aspects of Magnetospheric Physics: Transl. from Eng., 312 p. (Mir, Moscow, 1987) [in Russian].
9. Maslennikov M. V., Sigov V. S., Churkina G. P. Numerical experiments on the flow of bodies of various shapes by the rarefied plasma. Kosm. Issled. (Cosmic Research),  6(2), 220—227 (1968) [in Russian].
10. Mitchner M., Kruger Ch.H. Partially ionized gases: Transl. from Eng., 496 p. (Mir, Moscow, 1976) [in Russian].
 11. Nechtel E., Pitts U. Experimental studies of resistance to movement of satellites due to electrical forces.  Raketnaja tehnika i kosmonavtika, 2(6), 222—225 (1964) [in Russian].
12. Nishida A. Geomagnetic Diagnosis of the  Magnetosphere: Transl. from Eng., 299 p. (Mir, Moscow, 1980) [in Russian].
13. Shuvalov V. A. Influence of the surface potential and the intrinsic magnetic field on the resistance of the body in a supersonic flow of rarefied partially ionized gas Journal of Applied Mechanics and Technical Physics, N3, 41—47 (1986) [in Russian].
14. Shuvalov V.A., Kulagin S.N., Kochubei G.S., Tokmak N.A. Simulation of effects of the MHD-interaction of bodies with the Earth ’s atmosphere in a rarified plasma flow. Kosm. Nauka Tehnol., 17 (5), 29—36 (2011) [in Russian].
15. Shuvalov V. A., Kulagin S. N., Kochubei G. S., Tokmak N. A. Physical simulation of the interaction effects of Magnetized bodies and the Earth’s atmosphere in a hypersonic rarefied plasma flow. High Temperature50(3), 337—345 (2012) [in Russian]. 
16. Shuvalov V. A., Kulagin S. N., Kochubei G. S., Tokmak N. A. Dynamic interaction of a “magnetized” cone with a hypersonic flow of rarefied plasma. High Temperature51(6), 803—810 (2013) [in Russian]. 
17. Ebert G. Brief reference book on physics. 552 p. (Fizmatgiz, Moscow, 1963) [in Russian].
18. Bisek N. J., Boyd I. D. Numerical study of magnetoaerodynamic flow around a hemisphere.  J. Spacecraft and Rockets47(5), 816—827 2010). 
19. Fujino T., Yoshino T., Ishikawa M. Numerical analysis of reentry trajectory coupled with magnetohydrodynamic flow control.  J. Spacecraft and Rockets,  45(5), 911—920 (2008). 
20. Nishida H, Nakayama Y. Two-dimentional magnetohydrodynamic simulation of a magnetic sail.  J. Spacecraft and Rockets,  43(3), 667—672 (2006). 
21. Toivanen P. K., Janhunen P., Koskinen H. E. J.Magnetospheric propulsion (eMPii). ESTEC.  Contract N 16361/02/NL/LvH. Final report, Issue 1.3, 78 p. (April 2004)
22. Zubrin P. M., Andrews D. G. Magnetic sail and interplanetary travel.  J. Spacecraft and Rockets,  28(2), 197—203 (1991).