The cross-calibration method for “Sich-2” data

1Basarab, RM
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Integration-Plus LTD, Kyiv, Ukraine
Kosm. nauka tehnol. 2014, 20 ;(1):44-50
Section: Study of the Earth from Space
Publication Language: Ukrainian

A model and software for the radiometric correction of the spacecraft “Sich-2” data are proposed. The accuracy of the model for initial image data of the “Sich-2” and “Landsat-5 TM” spacecrafts is analyzed. Some existing problems are identified and some ways for their overcoming are proposed.

Keywords: data correction, image data of the spacecraft “Sich-2”

1. Fedorov O.P., Kussul N.M., Kravchenko O.M., et al. Information technologies for georeference of “Sich-2 ” data for Ukraine. Kosm. nauka tehnol., 19 (1), 3 —12 (2013) [in Russian].
2. Bryan A. F., Bailey S. W., Werdell J. P., McClain C. R. Sensor-independent approach to the vicarious calibration of satellite ocean colour radiometry. Appl. Opt.  46(22), 5068—5082 (2007).
3. Cao C., Weng F., Goldberg M., et al. Intersatellite calibration of polar-orbiting radiometers using the SNO/SCO method.  IEEE Int. Geosci. Remote Sens. Symp1,  109—112 (2005).
4. Chander G., Markham B. L., Helder D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors.  Remote Sens. Environ. 113(5), 893—903 (2009).
5. Chander G., Xiong X., Angal A., et al. Cross-comparison of the IRS-P6 AWiFS sensor with the L5 TM, L7 ETM+, & Terra MODIS sensors.  Proc. SPIE, Sensors, Systems, and Next-Generation Satellites XIII, 74740Z.  DOI:10.1117/12.830502 (September 22, 2009). 
6. Gyanesh C., Hewison T. J., Fox N., et al. Overview of intercalibration of satellite instruments.  IEEE Trans. Geosci. and Remote Sens.  51(3), 1056—1080 (2013).
7. Huber P. J, Ronchetti E. M. Robust statistics, Second edition.  380 р. (John Wiley and Sons inc., N.Y., 2009).
8. Masek J. G., Vermote E. F., Saleous N. E., et al. A Landsat surface reflectance dataset for North America, 1990—2000.  IEEE Geosci. and Remote Sens. Lett. Jan.  3(1), 68—72 (2006).
9.  Kogan F., Kussul N., Adamenko T., et al. Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models.  Int. J. Appl. Earth Observ. and Geoinform.  23, 192—203 (2013).
10. Kussul N., Skakun S., Shelestov A., et al. Crop area estimation in Ukraine using satellite data within the MARS project 2012. IEEE Int. Geosci. and Remote Sens. Symp.  (IGARSS).  P. 3756—3759 (2012).
11. Kussul N., Mandl D., Moe K., et al. Interoperable infrastructure for flood monitoring: sensorweb, grid and cloud. IEEE J. Selected Topics in Appl. Earth Observations and Remote Sens. 5(6), 1740—1745 (2012). 
12. Kussul N., Shelestov A., Skakun S., et al. The wide area grid testbed for flood monitoring using Earth observation data.  IEEE J. Selected Topics in Appl. Earth Observations and Remote Sens.  5(6), 1746—1751 (2012).
13. Mears C. A., Wentz F. J. Construction of the RSS V3.2 lowertropospheric temperature dataset from the MSU and AMSU microwave sounders. Oceanic Technol.  26 (8), 1493—1509 (2009).
14. Semunegus H., Berg W., Bates J. J., et al. An extended and improved Special Sensor Microwave Imager (ssm/i) period of record. J. Appl. Meteorol. Climatol,  49(3), 424—436 (2010).
15. Shelestov A. Yu., Kravchenko A. N., Skakun S.V., et al. Geospatial information system for agricultural monitoring.  Cybern. and Syst. Anal.  49(1), 124—132 (2013).
16. Shi L., Bates J. J. Three decades of intersatellite-calibrated high-resolution infrared radiation sounder upper tropospheric water vapour. J. Geophys. Res.  116(D4). (2011).
17. Thome K., Whittington E., Smith N., et al. Ground-reference techniques for the absolute radiometric calibration of MODIS. Proc. SPIE Conf. , 51—59. (2000)
18. Thome K. Sampling and uncertainty issues in trending reflectancebased vicarious calibration results.  Proc. SPIE Conf.  5882, 397—407 (2005).
19. Schroeder T. A., Cohen W. B., Song C., et al. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon.  Remote Sens. Environ. 103, 16—26 (2006).
20. Vermonte E. F., Tanre D., Deuze J. L., et al. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. and Remote Sens. 35(3), 675—686 (1997).
21. Wang L., Goldberg M., Wu X., et al. Consistency assessment of atmospheric infrared sounder and infrared atmospheric sounding interferometer radiances: Double differences versus simultaneous nadir overpasses.  J. Geophys. Res.: Atmospheres116(D11)б  (2011).
22. Zoran M., Stefan S. Atmospheric and spectral corrections for estimating surface albedo from satellite data. J. Optoelectron. and Adv. Mater.  8(1), 247—251 (2006).