Expanding the flexible long element aboard spacecraft with the magnetic damper

1Zakrzhevskii, AE, 2Khoroshylov, VS
1S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Kosm. nauka tehnol. 2014, 20 ;(1):28-43
Publication Language: Russian

A generalized mathematical model is derived and numerical simulation is carried out for studying the dynamics of the spacecraft with the passive stabilization system that contains the compact structure of changeable configuration, which is deploying under a prescribed program into the flexible gravitational stabilizer with the magnetic damper at its end.

Keywords: dynamics of the spacecraft, the passive stabilization system

1.  Branec V. N., Shmyglevskij I. P. Application of quaternion in problems of orientation of a rigid body. 320 p. (Nauka, Moscow, 1973) [in Russian].
2.  Ivanova G. A. The dynamics of the spacecraft with the gravity-magnetic orientation system in the presence of thermal and elastic deformation of structural elements: Dis. ... kand. fiz.-mat. nauk. Mashinopis', 150 p. (Moscow, 1991) [in Russian].
3.  Lur'e A. I. Analytical mechanics.  824 p. (Fizmatiz, Moscow, 1961) [in Russian].
4.  Sadov Ju. A. The periodic motion of the satellite with a magnetic damper in the plane of a circular orbit.  Kosm. Issled. (Cosmic Research), 7 (1), 51—60 (1969) [in Russian].
5.  Sarychev V. A., Ovchinnikov M. Ju. Magnetic orientation system of artificial Earth satellites.  Itogi nauki i tehn. Issled. kosmich. prostranstva. 23, 104 p. (VINITI, Moscow, 1985) [in Russian].
6.  Sokolov L. V. The magnetic damper for gravitational orientation system. Upravlenie v prostranstve: Tr. IV Mezhdunar. simp. po avtom. upravl. v prostranstve.  V. 1, 174—179 (Nauka, Moscow, 1973) [in Russian].
7.  Textbook for celestial mechanics and astrodynamics. 889 p. (Nauka, Moscow, 1976) [in Russian].
8.  Alper J. R., O’Neill J. P. A new passive hysteresis damping technique for stabilizing gravity-oriented satellites. J. Spacecraft and Rockets.  4(12), 1617—1622 (1967). 
9.  Crespo da Silva Marcelo R. M. Non-linear resonant attitude motions in gravity-stabilized gyrostat satellites.  Int. J. Non-Linear Mech., 7(6), 621—641 (1972). 
10. Newton J. K., Farrell J. L. Natural frequencies of a flexible gravity-gradient satellite.  J. Spacecraft and Rockets.  5(5), 550—569 (1968).
11.  Zakrzhevskii A. E. Spacecraft dynamics with regard to elastic pantograph deployment.  J. Spacecraft and Rockets.  50(2), 475—480 (2013).