Influence of high-frequency vibration on crystallization surface in cylindrical Bridgeman's ampule

1Ladikov-Roev, Yu.P, 1Cheremnykh, OK
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2014, 20 ;(1):14-22
https://doi.org/10.15407/knit2014.01.014
Section: Space Materials and Technologies
Publication Language: Ukrainian
Abstract: 

The influence of the high-frequency vibration on crystallization front stability in the space experimental conditions was investigated. The study was performed with the use of the vertical Bridgman method. A possible type of crystallization front perturbations was obtained

Keywords: Bridgman ampule, crystallization front, vibration
References: 

1.  Gershuni G. Z., Zhuhovickij E. M. Convective stability of incompressible fluid. 296 p. (Nauka, Moscow, 1972) [in Russian].
2. Zemskov V. S. New scientific understanding of the processes that accompany the directional solidification of melts. The result of experiments on crystal growth of semiconductors on spacecraft.  Mehanika nevesomosti. Itogi i perspektivy fundamental'nyh issledovanij gravitacionno- chuvstvitel'nyh sistem: Sb. tr. VII Rossijskogo simp., Moscow, April, 11—14, 2000. P. 34—51 (In-t problem mehaniki RAN, Moscow, 2000) [in Russian].
3. Ladikov-Roev Yu.P., Rabochii P. P., Cheremnykh O.K. On convective flow structures in installation of crystallization Bridgmen at high Grassgoff numbers.  Applied hydromechanics, 8(2), 57—63 (2006) [in Russian].
3. Ladikov-Roev Yu.P., Rabochii P. P., Cheremnykh O.K. The effect of translational vibration and uniform rotation on the processes of heat transfer in substance melt at cristall growing by Bridgmen's method in conditions of microgravitation.  Applied hydromechanics, 9(1), 45—53 (2007) [in Russian].
5. Ladikov-Roev Yu.P., Cheremnykh O.K. Mathematical models of continuous media. 552 p. (Nauk. dumka, Kiev, 2010) [in Russian].
6. Ljubimov D. V., Ljubimova T. P., Cherepanov A. A. Dynamics of interfaces in vibration fields. 215 p. (Fizmatlit, Moscow, 2003) [in Russian].
7. Nayfeh A.H. Introduction to Perturbation Techniques: Transl. from Eng., 365 p. (Mir, Moscow, 1984) [in Russian].
8. Akimenko V. V., Cheremnykh O. K. Modeling of vortical flows on the background of two-dimensional process of convective heat and mass transfer.  J. Automation and Inform. Sci. 36(3), 35—45 (2004). 
https://doi.org/10.1615/JAutomatInfScien.v36.i3.40
9. Fedoseyev A. I., Alexander J. I. D. Investigation of vibrational control of convective flows in Bridgman melt growth configurations.  J. Cryst. Growth.  211, 34—42 (2000). 
https://doi.org/10.1016/S0022-0248(99)00839-8 
10. Lyubimov D. V., Lyubimova T. P., Meradji S., Roux B. Vibrational control of crystal growth from liquid phase.  J. Cryst. Growth.  180, 648—659 (1997). 
https://doi.org/10.1016/S0022-0248(97)00294-7
11. Salnikov N. N., Klimenko Yu. A., Ladikov-Roev Yu. P., Cheremnykh O. K. On conditions of realization of flat interf ace in cylindrical ampule in Bridgeman setup.  J. Automation and Inform. Sci35(9), 27—39 (2003).
https://doi.org/10.1615/JAutomatInfScien.v35.i9.40