Anuncertainty analysis in the climatic change estimation problem on regional level with the use of satellite observations of atmospheric concentration of greenhouse gases

1Lyalko, VI, 2Kostyuchenko, Yu.V, 2Artemenko, IG, 3Popadjuk, LM, 3Fedyna, RM, 3Voloshanenko, AS
1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
2State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
3Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2013, 19 ;(6):18–26
https://doi.org/10.15407/knit2013.06.018
Section: Study of the Earth from Space
Publication Language: Ukrainian
Abstract: 

We consider the role of data and remote sensing methods for the estimation of uncertainty balance of greenhouse gases and carbon emissions in problems of the climate change estimation on the regional level. It is shown that the use of remote sensing data in the uncertainty estimation procedure (in the case of ecological, socio-ecological and socio-economical processes) allows one to optimize the system management of ecological, social and economical risks both on the state and regional level.

Keywords: greenhouse gases, management of risks, satellite data, the climate parameter change
References: 

1. Bun' R.A., Gusti M.I., Dachuk V.S. et al. Information technology of industry inventories of the greenhouse gases and prediction of the carbon balance of Ukraine [Informacijni tehnologii' inventaryzacii' parnykovyh gaziv ta prognozuvannja vuglecevogo balansu Ukrai'ny], 376 p. (Ukr. akademija drukarstva, Lviv, 2004) [in Ukrainian].

2. Buchwitz M., Burrows J.P. Retrieval of CH4, CO, and CO2 total column amounts from SCIAMACHY near-infrared nadir spectra: Retrieval algorithm and first results, in: Remote Sensing of Clouds and the Atmosphere VIII. Proc. SPIE, 5235, 375—388 (2005).
https://doi.org/10.1117/12.514219

3. Buchwitz M., de Beek R., Burrows J. P., et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmos. Chem. Phys. N5, 941—962 (2005).
https://doi.org/10.5194/acp-5-941-2005

4. Buchwitz M., de Beek R., Noël S., et al. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmos. Chem. Phys. N 6, 2727—2751 (2006).
https://doi.org/10.5194/acp-6-2727-2006

5. Chandler W., Raptsun M. Modeling and analysis of greenhouse gases emissions in Ukraine: Selecting and Adapting the ENPEP Program to Ukrainian Conditions and Test Modeling. Report PNNL-13874, Pacific, Northwest National Laboratory (USA) and Agency for Rational Energy Use and Ecology (Ukraine), 44 p. (Kyiv, 2001)

6. Cubasch U., Hasselmann K., Huck H., et al. Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model. Climate Dynamics. N8, 55—69 (1992).
https://doi.org/10.1007/bf00209163

7. Global Energy Assessment — Toward a Sustainable Future / GEA Writing Team, 1888 p. (Cambridge University Press, Cambridge, 2012).

8. Houghton J. Climate change and sustainable energy, 208 p. (Met Office, Hadley Centre, London, 2005).

9. Huntingford C., Cox P. M., Lenton T. M. Contrasting responses of a simple terrestrial ecosystem model to global change. Ecol. Modelling, N134(1), 41—58 (2000).
https://doi.org/10.1016/S0304-3800(00)00330-6

10. Mearns L. O., Easterling W., Hays C., Marx D. Comparison of agricultural impacts of climate change calculated from high and low resolution climate change scenarios. Part I. The uncertainty due to spatial scale. Climatic Change, 172 p. (2001).

11. Nakićenović N., Swart R. Special Report on Emissions Scenarios: A special report of Working Group III of the Intergovernmental Panel on Climate Change, 570 p. (University Press, Cambridge, 2000).

12. National greenhouse gas inventory data for the period 1990—2009. FCCC, 26 p. (2011).

13. Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., and Hanson C.E. (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability — Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 987 p. (University Press, Cambridge, 2007).

14. Petit J.R., Jouzel J., Raynaud D., et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 429—436 (1999).
https://doi.org/10.1038/20859

15. Raynaud D., Barnola J.M., Chappellaz J., et al. The ice record of greenhouse gases: a view in the context of future changes. Quatern. Sci. Revs. N19, 9—17 (2000).
https://doi.org/10.1016/S0277-3791(99)00082-7

16. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reporting Instructions, The Workbook, Reference Manual. IPCC, Vol.1—3 (1997).

17. Schneising O., Buchwitz M., Burrows J.P., et al. Three years of greenhouse gas column–averaged dry air mole fractions retrieved from satellite. Part 1. Carbon dioxide. Atmos. Chem. Phys. N 8, 3827—3853 (2009).
https://doi.org/10.5194/acp-8-3827-2008

18. Schneising O., Buchwitz M., Burrows J.P., et al. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite. Part 2: Methane. Atmos. Chem. Phys. N 9, 443—465 (2009).
https://doi.org/10.5194/acp-9-443-2009

19. Shvidenko A., Schepaschenko D., McCallum I., Nilsson S. Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers? Climatic Change, N 103, 137—157 (2010).

20. Viner D., Hulme M., Raper S.C.B. Climate change scenarios for the assessments of the climate change on regional ecosystems. J. Therm. Biol. 20, 175—190 (1995).
https://doi.org/10.1016/0306-4565(94)00047-M

21. White T., Jonas M., Nahorski Z., Nilsson S. Greenhouse gas inventories: Dealing with uncertainty, 343 p. (Springer Science+Business Media, Heidelberg, 2011).