Fire impact on aerosol distribution over Ukraine from satellite and ground-based measurements

1Bovchaliuk, AP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2013, 19 ;(5):27–41
https://doi.org/10.15407/knit2013.05.027
Publication Language: Ukrainian
Abstract: 

We analyze the sources of aerosol transport from forest, steppe, peat and agricultural fires over Ukraine from 2002 to 2012. Some data from the satellite instruments POLDER/ PARASOL and MODIS were used to characterize the distribution of aerosol particles in the atmosphere and to visualize fire locations on Earth’s surface, respectively. The cluster analysis was used to classify air mass back trajectories using the HYSPLIT model. Moreover, the data obtained by ground-based network AERONET were used for analysis of volume size distributions over Kyiv site during 2008—2012.
The maximum values of aerosol optical thickness (AOT) at 870 nm wavelength ranging from 0.4 to 0.7 were observed from 14 to 16 August 2010 over Eastern and Central Ukraine, which were caused by strong forest and peat wildfires in the central area of European part of Russia. The sources of aerosol combustion were located at greater distance from Kyiv during this period in comparison to August 2008, when fires occurred in the Central and Southern Ukraine. The monthly average AOT ranging from 0.05 to 0.08 was observed over Northern and Central Ukraine as a result of steppe wildfires in Belarus from April to May 2006. It was determined that transboundary transport of atmosphere plays an important role in the aerosol distribution and affects on air quality over all the Eastern European countries. The radii of fine fraction aerosols corresponding to maxima of the size distribution are equal to 0.2—0.25 μ over Kyiv site during wildfires which may be evidence for the presence of biomass burning and industrial aerosols simultaneously. Furthermore, some features are observed in the size distribution of coarse fraction in the form of double peak from April to June which can be explained by the seasonal nature of particle origin. The volume size distribution is characterized by the most significant fraction of fine particles in May — July 2012 as compared to the same period in other years.

Keywords: AERONET, aerosols, air mass trajectories, forest and steppe fires, satellite data
References: 

1. Kabashnikov V.P., Aculinin A.A., Danylevsky V.O., et al. Atmosphere aerosol transfer in the East European region by AERONET network data using the cluster analysis method. Nauk. praci UkrNDGMI. Is.262, 40—58 (2012) [in Russian].

2. National Report on the State of Techno and Natural Safety in Ukraine in 2012. State Emergency Service of Ukraine. Official website.. Retrieved from: http://www.mns.gov.ua/content/nasdopovid2012.html

3. Yatskiv Ya.S., Mishchenko M.I., Rosenbush V.K., et al. Satellite project «Aerosol-UA»: Remote sensing of aerosols in the Earth’s atmosphere. Kosm. nauka tehnol., 18 (4), 3—15 (2012) [in Russian].
https://doi.org/10.15407/knit2012.04.003

4. Abdalmogith S. S., Harrison R. M. The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK. Atmos. Environ, 39(35), 6686—6695 (2005).
https://doi.org/10.1016/j.atmosenv.2005.07.059

5. Amiridis V., Balis D. S., Giannakaki E., et al. Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements. Atmos. Chem. Phys. 9, 2431—2440 (2009).
https://doi.org/10.5194/acp-9-2431-2009

6. Amiridis V., Giannakaki E., Balis D. S., et al. Smoke injection heights from agricultural burning in Eastern Europe as seen by CALIPSO. Atmos. Chem. Phys. 10, 11567—11576 (2010).
https://doi.org/10.5194/acp-10-11567-2010

7. Anderson T. L., Charlson R. J., Bellouin N., et al. An “A-Train” Strategy for Quantifying Direct Climate Forcing by Aerosols. Bull. Amer. Meteorol. Soc. 86, 1795—1809 (2005).
https://doi.org/10.1175/BAMS-86-12-1795

8. Barnaba F., Angelini F., Curci G., Gobbi G. P. An important fingerprint of wildfires on the European aerosol load. Atmos. Chem. Phys. — 11, 10487—10501 (2011).
https://doi.org/10.5194/acp-11-10487-2011

9. Bovchaliuk A., Milinevsky G., Danylevsky V., et al. Variability of aerosol properties over Eastern Europe observed from ground and satellites in the period from 2003 to 2011. Atmos. Chem. Phys. 13, 6587—6602 (2013).
https://doi.org/10.5194/acp-13-6587-2013

10. Bovchaliuk V., Bovchaliuk A., Milinevsky G., et al. Aerosol Microtops II sunphotometer observations over Ukraine. Adv. Astron. and Space Phys. 3, 46—52 (2013).

11. Bréon F.-M. Parasol Level-1 Product Data Format and User Manual. 31 p. (CEA/LSCE, CNES, France, 2006).

12. Bréon F.-M. Parasol Level-2 Product Data Format and User Manual. 32 p.(CEA/LSCE, CNES, France, 2006).

13. Bréon F.-M. Parasol Level-3 Product Data Format and User Manual. 27 p. (CEA/LSCE, CNES, France, 2006).

14. Bréon F.-M., Vermeulen A., Descloitres J. An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sens. Environ. 115, 3102— 3111 (2011).
https://doi.org/10.1016/j.rse.2011.06.017

15. Chin M., Kahn R. A., Schwartz S. E. (Eds) Atmospheric aerosol properties and climate impacts. 128 p. (U.S. Climate Change Science Program, Washington, 2009).

16. Chubarova N., Nezval’ Ye., Sviridenkov I., et al. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010. Atmos. Meas. Tech. 5, 557—568 (2012).
https://doi.org/10.5194/amt-5-557-2012

17. Danylevsky V., Ivchenko V., Milinevsky G., et al. Aerosol layer properties over Kyiv from AERONET/PHOTONS sunphotometer measurements during 2008—2009. Int. J. Remote Sens. 32, 657—669 (2011).
https://doi.org/10.1080/01431161.2010.517798

18. Danylevsky V., Ivchenko V., Milinevsky G., et al. Atmospheric aerosol properties measured with AERONET/ PHOTONS sun-photometer over Kyiv during 2008—2009. Use of satellite and in-situ data to improve sustainability / Eds F. Kogan, A. Powell, O. Fedorov. P. 285—294 (Springer, Dordrecht, 2011).

19. Deschamps P. Y., Bréon F. M., Leroy M., et al. The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens. 32, 598—615 (1994).
https://doi.org/10.1109/36.297978

20. Deuzé J. L., Bréon F. M., Devaux C., et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. 106, 4913—4926 (2001).
https://doi.org/10.1029/2000JD900364

21. Dorling S. R., Davies T. D., Pierce C. E. Cluster analysis: a technique for estimating the synoptic meteorological controls on air and precipitation chemistry — method and applications. Atmos. Environ. 26, 2575—2581 (1992).
https://doi.org/10.1016/0960-1686(92)90110-7

22. Draxler R. R., Hess G. D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag. 47, 295—308 (1998).

23. Draxler R. R., Rolph G. D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php0 NOAA Air Resources Laboratory (Silver Spring, MD, 2013).

24. Dubovik O., Holben B., Eck T. F., et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590—608 (2002).
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

25. Dubovik O., King M. D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 105, 20673—20696 (2000).
https://doi.org/10.1029/2000JD900282

26. Dubovik O., Smirnov A., Holben B. N., et al. Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements. J. Geophys. Res. 105, 9791—9806 (2000).
https://doi.org/10.1029/2000JD900040

27. Eck T. F., Holben B. N., Reid J. S., et al. The wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols. J. Geophys. Res. 104, 31333—31350 (1999).
https://doi.org/10.1029/1999JD900923

28. Fan X. H., Goloub P., Deuzé J. L., et al. Evaluation of PARASOL aerosol retrieval over North East Asia. Remote Sens. Environ. 112, 697—707 (2008).
https://doi.org/10.1016/j.rse.2007.06.010

29. Forster P., Ramasvamy V., Artaxo P. (Eds). IPCC Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. P. 129—234 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007).

30. Giglio L., Csiszar I., Justice C. O. Global Distribution and Seasonality of Active Fires as Oserved with the Terra and Aqua MODIS Sensors. J. Geophys. Res. 111, G02016 (2006)
https://doi.org/10.1029/2005JG000142 

31. Giglio L., Descloitres J., Justice C. O., Kaufman Y. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 87, 273—282 (2003).
https://doi.org/10.1016/S0034-4257(03)00184-6

32. Giles D. M., Holben B. N., Eck T. F., et al. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. 117, 17203 (2012).
https://doi.org/10.1029/2012JD018127

33. Goloub P., Tanré D., Deuzé J. L., et al. Validation of the first algorithm applied for deriving the aerosol properties over the ocean using the POLDER/ADEOS measurements. IEEE Trans. Geosci. Remote Sens. 37, 1586—1596 (1999).
https://doi.org/10.1109/36.763270

34. Herman M., Deuzé J. L., Marchand A., et al. Aerosol Remote Sensing from POLDER/ADEOS over the Ocean. Improved Retrieval using Non-Spherical Particle Model. J. Geophys. Res. 110, D10S02 (2005).
https://doi.org/10.1029/2004JD004798

35. Holben B. N., Eck T. F., Slutsker I., et al. AERONET — a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1—16 (1998).
https://doi.org/10.1016/S0034-4257(98)00031-5

36. Israelevich P., Ganor E., Alpert P., et al. Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. J. Geophys. Res. 117, D02205 (2012).
https://doi.org/10.1029/2011JD016482

37. Kaufman Y. J., Justice C. O., Flynn L. P., et al. Potential Global Fire Monitoring from EOS-MODIS. J. Geophys. Res. 103, 32215—32238 (1998).
https://doi.org/10.1029/98JD01644

38. Kaufman Y. J., Tanré D., Boucher O. A satellite view of aerosols in the climate system. Nature. 419, 215—223 (2002).
https://doi.org/10.1038/nature01091

39. King M. D., Kaufman Y. J., Tanre D., Nakajima T. Remote sensing of tropospheric aerosols from space: past, present, and future. Bull. Amer. Meteorol. Soc. 80, 2229—2259 (1999).
https://doi.org/10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2

40. Kondratyev K. Ya. Climatic effects of aerosols and clouds. 267 p. (Praxis, Chichester, 1999).

41. Konovalov I. B., Beekmann M., Kuznetsova I. N., et al. Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos. Chem. Phys. 11, 10031—10056 (2011).
https://doi.org/10.5194/acp-11-10031-2011

42. Korontzi S., McCarty J., Loboda T., et al. Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochem. Cy. 20, GB2021 (2006).
https://doi.org/10.1029/2005GB002529

.43. Li Z., Zhao X., Kahn R., et al. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann. geophys. 27, 2755—2770 (2009).
https://doi.org/10.5194/angeo-27-2755-2009

44. Lund Myhre C., Toledano C., Myhre G., et al. Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006. Atmos. Chem. Phys. 7, 5899—5915 (2007).
https://doi.org/10.5194/acp-7-5899-2007

45. Luterbacher J., Dietrich D., Xoplaki E., et al. European Seasonal and Annual Temperature Variability, Trends, and Extremes since 1500. Science. 303, 1499—1503 (2004).
https://doi.org/10.1126/science.1093877

46. Milinevsky G. P., Danylevsky V. O., Grytsai A. V., et al. Recent developments of atmospheric research in Ukraine. Adv. Astron. and Space Phys. 2, 114—120 (2012).

47. Mishchenko M., Cairns B., Hansen J., et al. Monitoring of aerosol forcing of climate from space: analysis of measurement requirements. J. Quant. Spectrosc. and Radiat. Transfer. 88, 149—161 (2004).
https://doi.org/10.1016/j.jqsrt.2004.03.030

48. Mishchenko M. I., Cairns B., Kopp G., et al. Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission. Bull. Amer. Meteorol. Soc. 88, 677—691 (2007).
https://doi.org/10.1175/BAMS-88-5-677

49. Mishchenko M. I., Geogdzhayev I. V., Cairns B., et al. Past, present, and future of global aerosol climatologies derived from satellite observations: a perspective. J. Quant. Spectrosc. and Radiat. Transfer. 106, 325— 347 (2007).
https://doi.org/10.1016/j.jqsrt.2007.01.007

50. Mishchenko M. I., Geogdzhayev I. V., Rossow W. B., et al. Long-term satellite record reveals likely recent aerosol trend. Science, 315, P. 1543 (2007).
https://doi.org/10.1126/science.1136709

51. Morisette J. T., Giglio L., Csiszar I., et al. Validation of MODIS active fire detection products derived from two algorithms. Earth Interactions. 9, 1—23 (2005).
https://doi.org/10.1175/EI141.1

52. Nadal F., Bréon F.-M. Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements. Geosci. and Remote Sens. 37, 1709—1718 (1999).
https://doi.org/10.1109/36.763292

53. Pettus Ashley. Agricultural Fires and Arctic Climate Change: A Special CATF Report. 33 p. (Clean Air Task Force, Boston, MA, 2009).

54. Remer L. A., Kaufman Y. J., Holben B. N., et al. Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res.-Atmos. 103, 31879—31891 (1998).
https://doi.org/10.1029/98JD00271

55. Rolph G. D. Real-time Environmental Applications and Display sYstem (READY) Website (http://ready.arl.noaa.gov) (NOAA Air Resources Laboratory, Silver Spring, 2013).

56. Rozwadowska A., Zieliński T., Petelski T., Sobolewski P. Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen. Atmos. Chem. Phys. 10, 877—893 (2010).
https://doi.org/10.5194/acp-10-877-2010

57. San-Miguel-Ayanz J., Barbosa P., Camia A. (Eds). European Commission. 2004. Forest fires in Europe 2003 fire campaign. Official Publication of the European Communities, SPI.04.124 EN, 51 p. (2004).

58. Schmuck G., San-Miguel-Ayanz J., Barbosa P. (Eds.). European Commission. 2006. Forest fires in Europe 2005. Official Publication of the European Communities, EUR 22 312 EN, 55 p. (2006).

59. Schroeder W., Prins E., Giglio L., et al. Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 112, 2711—2726 (2008).
https://doi.org/10.1016/j.rse.2008.01.005

60. Sciare J., Oikonomou K., Favez O., et al. Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning. Atmos. Chem. Phys. 8, 5551—5563 (2008).
https://doi.org/10.5194/acp-8-5551-2008

61. Seinfeld J. H., Pandis S. N. Atmospheric chemistry and physics: from air pollution to climate change, 1203 p. (New York: Wiley, 2006).

62. Shindell D. T., Chin M., Dentener F., et al. A multi-model assessment of pollution transport to the Arctic. Atmos. Chem. Phys. 8, 5353—5372 (2008).
https://doi.org/10.5194/acp-8-5353-2008

63. Stohl A. Characteristics of atmospheric transport into the Arctic Troposphere. J. Geophys. Res. 111, D113306 (2006)
https://doi.org/10.1029/2005JD006888

64. Stohl A., Berg T., Burkhart J. F., et al. Arctic smoke — record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys. 7, 511—534 (2007).
https://doi.org/10.5194/acp-7-511-2007

65. Tanré D., Bréon F. M., Deuzé J. L., et al. Global observation of anthropogenic aerosols from sattelite. Geophys. Res. Lett. 28, 4555—4558 (2001).
https://doi.org/10.1029/2001GL013036 

66. Tanré D., Bréon F. M., Deuzé J. L., et al. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos. Meas. Tech. 4, 1383—1395 (2011).
https://doi.org/10.5194/amt-4-1383-2011

67. Witte J. C., Douglass A. R., da Silva A., et al. NASA A-Train and Terra observations of the 2010 Russian wildfires. Atmos. Chem. Phys. 11, 9287—9301 (2011).
https://doi.org/10.5194/acp-11-9287-2011