Plant biology in space: scientific results and problems

1Kordyum, EL
1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2013, 19 ;(4):65–77
https://doi.org/10.15407/knit2013.04.065
Section: Space Life Sciences
Publication Language: Russian
Abstract: 

The main tendencies in plant space and gravitational biology today in countries, which are members of the International Space Life Sciences Working Group, are considered. Certain examples of available and workable technical facilities for space and groundbased experiments with plants are presented. An urgent idea on the utilization of plants as the necessary components of bioregenerative life-support systems in interplanetary space flights is emphasized to be very far from its practical realization that requires space green-houses of the sufficient volume, as well as development and testing of technologies for a green conveyer onboard space vehicles and performing the genetic and breeding works to obtain the varieties of crops adapted to spaceflight conditions.

Keywords: bioregenerative systems, green-houses, space biology
References: 
1. Berkovich Yu.A., Krivobok N.M., Smolianina S.O., Erokhin A.N. Space Greenhouses: The Present and the Future, 367 p. (Slovo, Moscow, 2005) [in Russian].
2. Kordyum E.L., Chapmen D.K. Plants in Space, 215 p. (Akademperiodyka, Kyiv, 2007) [in Russian].
3. Levinskih M. A., Polikarpov N. A., Novikova N. D. et al. Investigation of the influence of space factors on plant seeds in the experiment "Biorisk-MSN-2" . In:  K.E. Tsiolkovsky and the problems of space medicine and biology.[Issledovanie vlijanija faktorov kosmicheskogo prostranstva na semena rastenij v ramkah jeksperimenta «Biorisk-MSN-2» // K. Je. Ciolkovskij i problemy kosmicheskoj mediciny i biologii].  (Gos. muzej istorii kosmonavtiki im. K. Je. Ciolkovskogo, Kaluga, 2010) [in Russian].
4. Merkis A. I., Laurinavichjus R. S. Full individual development of plants cycle Arabidopsis thaliana (L.) Heynh. on board the orbital station "Salyut 7" [Polnyj cikl individual'nogo razvitija rastenij Arabidopsis thaliana (L.) Heynh. na bortu orbital'noj stancii «Saljut 7»], Dokl. Academy of Sciences of the USSR, 271, 509 — 512 (1983) [in Russian].
5. Beysens D., Carotenuto L., van Loon J. W. A., Zell M. Laboratory Science with Space Data, 215 p. (Springer-Verlag, Berlin, Heidelberg, 2011).
https://doi.org/10.1007/978-3-642-21144-7
6. Bingham G. E., Levinskikh M. A., Sytchev V. N., Podolsky I. G. Effects of gravity on plant growth,  J. Gravit. Physiol., 7, 5—8 (2000).
7. Brykov V. O., Shugaev A. G., Generozova I. P. Ultrastructure and metabolic activity of pea mitochondria under clinorotation,  Cytology and Genetics, 46, 144—149 (2012).
https://doi.org/10.3103/S0095452712030036
8. Driss-Ecole D., Legue V., Carnero-Diaza E., Perbal G. Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the International Space Station, Physiol. Plantarum, 134, 191—201 (2008).
https://doi.org/10.1111/j.1399-3054.2008.01121.x
9. Halstead T. W., Dutcher F. R. Plants in space, Annu. Rev. Plant Physiol. 38, 317 — 345 (1987).
https://doi.org/10.1146/annurev.pp.38.060187.001533
10. Johnsson A., Solheim B. G. B., Iversen T.-H. Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment,  New Phytologist., 182, 621—629 (2009).
https://doi.org/10.1111/j.1469-8137.2009.02777.x
11. Kordyum E. Space biology: research results, Space Research in Ukraine 2006 — 2008, P. 81—94 (NSAU, Kyiv, 2008).
12.  Kordyum E. Space biology: results of research,  Space Research in Ukraine 2008 — 2010, P. 96—104 (Akademperiodica, Kyiv, 2011).
13. Kozeko L. Y., Kordyum E. L. The stress protein level under clinorotation in context of the seedling developmental program and the stress response,  Microgravity Sci. Techn., 14, 254—256 (2006).
https://doi.org/10.1007/BF02870422 
14. Kuang A., Popova A., McClure G., Musgrave M. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity,  Int. J. Plant Sci., 166, 85—96 (2005).
https://doi.org/10.1086/425664 
15. Matia I., Gonzallez-Camacho F., Herranz R. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight,  J. Plant Physiol., 167, 184—193 (2010).
https://doi.org/10.1016/j.jplph.2009.08.012 
16. Millar K. D. L., Johnson C. M., Edelmann R. E., Kiss J. Z. An endogenous growth pattern of roots is revealed in seedlings grown in microgravity,  Astrobiology, 11, 787—797 (2011).
https://doi.org/10.1089/ast.2011.0699
17. Musgrave M. E. Growing plants in space,  CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources, 2, 1—9 (2007).
https://doi.org/10.1079/PAVSNNR20072065
18. Paul A.-L., Manak M. S., Mayfield J. D., et al. Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana,  Astrobiology, 11, 743—758 (2011).
https://doi.org/10.1089/ast.2011.0659
19. Paul A.-L., Zupanska A. K., Ostrow D. T., et al. Spaceflight transcriptomes: Unique responses to a novel environment,  Astrobiology, 12, 40—56 (2012).
https://doi.org/10.1089/ast.2011.0696
20. Perbal G. From ROOTS to GRAVI-1: Twenty five years for understanding how plants sense gravity,  Microgravity Sci. Techn., 21, 3 —10 (2009).
https://doi.org/10.1007/s12217-008-9064-x 
21. Plant Biology in Space,  ISLSWG Satellite Workshop to the Plant Biology Congress 2012. Program and Abstracts, 30 p. (Freiburg, 2012)
22. Stutte G. W., Monje O., Goins G. D., Tripathy B. C. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat, Planta, 223, 46—56 (2005).
https://doi.org/10.1007/s00425-005-0066-2
23. Stutte G. W., Monje O., Hatfield R. D., et al. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat, Planta, 224, 1038—1049 (2006).
https://doi.org/10.1007/s00425-006-0290-4
24.  Sychev V. N., Levinskikh M. A., Gostimsky S. A., et al. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station, Acta Astronautica, 60, 426—432 (2007).
https://doi.org/10.1016/j.actaastro.2006.09.009
25. Wang I. I., Zheng H.Q., Wet S., et al. A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation, J. Exp. Bot., 57, 827—835 (2006).
https://doi.org/10.1093/jxb/erj066 
26. Yano S., Kasahara H., Masuda D., et al. Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station, Adv. Space Res., 51, 780—788 (2013).
https://doi.org/10.1016/j.asr.2012.10.002