An analysis of physical and technological aspects of air-based hyperspectrometer aviris of the first generation

1Donets, VV
1Corporation «Research and Production Enterprise «Arsenal», Kyiv, Ukraine
Kosm. nauka tehnol. 2013, 19 ;(4):17–28
https://doi.org/10.15407/knit2013.04.017
Section: Space Instruments
Publication Language: Russian
Abstract: 

We considered some design features and characteristics of on-board air-based 1st generation hyperspectrometer AVIRIS for spectrometric remote sensing of the Earth’s surface and for hyperspectrometer satellite data validation. Physical and technological aspects of the elaboration and use of the hyperspectrometer were analysed. The technological advances realized and approved in the case of the hyperspectrometer were used for the space-based hyperspectrometers SISEX (1990) and HIRIS (1994), for the civil-based hyperspectrometer HYPERION, army-based hyperspecyrometer ARTEMIS, compact instruments M3 and CRISM for remote sensing of the Moon’s and Mars’ surface, and for the aviation-based AVIRIS hyperspectrometer of new generation, AVIRISng.

Keywords: air-based hyperspectrometer AVIRIS, remote sensing, validation
References: 
1. Donets V. V., Muravskiy L. I. Some features of the use of emission detectors in on-board hyperspectrometers, Kosm. nauka tehnol., 18 (3), 20—37 (2012) [in Russian].
https://doi.org/10.15407/knit2012.03.020
2. Donets V. V. Design features of on-board air-based hyperspectrometers AIS, Kosm. nauka tehnol., 18 (5), 5—11 (2012) [in Russian].
https://doi.org/10.15407/knit2012.05.005
3. Popov M. O., Piontkivsky P. M., Hrynyuk S. V. The status and prospects of development of hyperspectral aerospace intelligence systems,  Science and Defense, No.2, 39-47 (2012) [in Ukrainian]. Retrieved from:  http://www.nio.mil.gov.ua/pdf/2012-2.pdf
4.  Tovmasian G. M. The ultraviolet telescopes in orbit [Electronic resource].  New in life, science, technology. Ser. astronautics, astronomy [Ul'trafioletovye teleskopy na  orbite,  Novoe v zhizni, nauke, tehnike. Ser. kosmonavtika, astronomija], N 5 (1989) Retrieved from:  http://epizodsspace.airbase.ru/bibl/znan/1989 /5/5-uf-tel.html
5.  AVIRIS (Airborne Visible/Infrared Imaging Spectrometer).  Retrieved from  https://directory.eoportal.org/ web/eoportal/airbornesensors/aviris
6.  Goetz A. F. H. Three decades of hyperspectral remote sensing of the Earth: A personal view Alexander F. H. Goetz,  Remote Sens. Environ., 113, P. S5—S16 (2009).  Retrieved from  ftp://laspftp.colorado.edu/pub/harvey/ Gamblin/IDL_code/Geotz_2009.pdf
https://doi.org/10.1016/j.rse.2007.12.014
7.  Green R. O., Eastwood M. L., Sarture C. M., et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Remote Sens. Environ., 65, 227—248 (1998) Retrieved from  http://www.utsa.edu/lrsg/Teaching/ ES6973/AVIRIS.pdf
https://doi.org/10.1016/S0034-4257(98)00064-9
8.  Fay M. E. An analysis of hyperspectral imagery data collected during operation Desert Radiance, 9—13 (1995). Retrieved from  www.nps.edu/faculty/olsen/Student_theses/Fay_Jun_1995. pdf
9.  The AVIRIS Instrument. Retrieved from http://www.ltid.inpe.br/html/pub/docs/ html/instr.htm
10. Green R. O. Green and the Imaging Spectroscopy Team, Measurement of the Earth's Terrestrial Ecosystems from Space: Concept for a 21st Century Global Biochemistry and Biodiversity Mission 2011.  Retrieved from http://www.fapesp.br/-14330-week2011/media/pres/green.pdf
11. Green R. O., Eastwood M. L., Sarture C. M., et al. Imaging spectroscopy and the Aihome VisibleAnfrared Imaging Spectrometer (AVIRIS). Retrieved from http://trs-new.jpl.nasa.gov/dspace/bitstream/ 2014/20277/1/98-1179.pdf
12. MacDonald J., Ustin S. L, Chaepman U., Schaepman M. A.  Review of the contributions of Dr. Alexander F. H. Goetz to imaging spectrometry. Retrieved from http://www.wageningenur.nl/upload_mm/ 5/8/1/ca27ce44-6549-4f9f-b85f-5ce3bef6634d_MacDonald_GoetzAchievements.pdf
13. Macenka S. A., Chrisp M. P. Infrared imaging spectrometer (AVIRIS) spectrometer design and performance,  N 88, P. 14327 (1987). Retrieved from http://adsabs.harvard.edu/abs/ 1988SPIE..834...32M
14. Miller D. C. AVIRIS scan drive design and performance, Proc. SPIE 0834, Imaging Spectroscopy II, 55 (January 1, 1987).
https://doi.org/10.1117/12.942284 .
15. Martinez P. J., Hermosel D., Green R. O., et al. An improved data structure for AVIRIS-type imaging spectrometer measurements,  13th JPL Airborne Earth Science Workshop, Pasadena, California, May 24-27, 2005. Retrieved from http://trs-new.jpl.nasa.gov/ dspace/bitstream/ 2014/39590/1/05-0851.pdf
16. Sarture C. M., Chovit C. J., Faust J. A., et al. High altitude hyperspectral remote sensing with AVIRIS,  California Institute of Technology.  Retrieved from  http://trs-new.jpl.nasa.gov/dspace/bitstream/ 2014/33488/1/94-1397.pdf
17.  Sensor systems of the NASA airborne science program. Retrieved from http://asapdata.arc.nasa.gov/ sensors.doc
18. Vane G. First results from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),  Proc. SPIE, (Imaging Spectroscopy II,  Ed. by G. Vane), 834, 166—174 (1987).

19.  Vane G., Porter W. M., Reimer J. H., et al.  AVIRIS performance during the 1987 flight season: an AVIRIS project assessment and summary of the NASA-sponsored performance evaluation,  Proceedings of the AVIRIS performance Evaluation Workshop, The Jet Propulsion Laboratory, JPL 83-88, P. 1—20 (1988).