Radiation susceptibility of supercapacitors and prospects for their space applications

1Klymenko, Yu.O, 2Semeniv, OV, Bezpalova, AV, 2Prutsko, Yu.V, 3Maletin, Yu.A, 3Stryzhakova, NG, 3Zelinskyi, SA, 3Tychyna, SO, 3Drobnyi, DM, 4Neymash, VB, 4Poroshin, VN, 4Povarchuk, VYu.
1Space Research Institute of the National Academy of Science of Ukraine and State Space Agency of Ukraine, Kyiv, Ukraine
2Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
3Institute for Sorption and Problems of Endoecology of National Academy of Science of Ukraine, Kyiv, Ukraine
4Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2013, 19 ;(3):47–60
Section: Space Energy, Power and Propulsion
Publication Language: Russian

The prospects for the use of supercapacitors as elements of a satellite energy supply system are considered. A series of laboratory experiments to study the influence of gamma and electron irradiations on the supercapacitor performance is carried out. It is found that the total equivalent radiation dose that degrades the main technical characteristics of the supercapacitors can be accumulated in the Earth’s orbits during the time that is much longer than the satellite lifetime. The electrolyte is shown to be the most sensitive supercapacitor element to ionizing radiation.

Keywords: ionizing radiation, satellite energy supply system, supercapacitors
1. Bezrodnikh I.P., Kazantsev S.G., Semenov V.T. Radiation environment of sun-synchronous orbit in the sunspot maximum period, Voprosy jelektromehaniki. Tr. NPP VNIEM [VNIEM Proceedings], 116 (3), 23—26 (2010) [in Russian].
2. Bezrodnikh I.P., Morozova E.I., Petrukovich A.A., et al. Geostationary orbit radiation environment, Voprosy jelektromehaniki. Tr. NPP VNIIEM, 117 (4), 33—42 (2010) [in Russian]
3. Bezrodnikh I.P., Morozova A .I., Petrukovich A.A., et al. Braking radiation of electrons in spacecraft matter. Calculation methodology, Voprosy jelektromehaniki. Tr. NPP VNIIEM, 120 (1), 37—44 (2011) [in Russian].
4. Bezrodnikh I.P., Morozova A .I., Petrukovich A.A., et al.  SC «Ionosphere» Orbit Radiation Environment, Voprosy jelektromehaniki. Tr. NPP VNIIEM, 123 (4), 19—28 (2011) [in Russian].
5. Bezrodnikh I.P., Semenov V.T. Relativistic Particles Shower Inside Meteor Type Spacecraft, Voprosy jelektromehaniki. Tr. NPP VNIIEM, 113 (6), 27—32 (2009) [in Russian].
 6. Bezrodnikh I. P., Shafer Yu. G. Dynamics of electron fluxes in the geostationary orbit and their relation to solar activity, Izv. AN SSSR. Ser. fiz., 47 (9), 1684—1686 (1983) [in Russian].
7. Gecelev I. V., Zubarev A. I., Pudovkin O. L. Radiacionnaja obstanovka na bortu kosmicheskih apparatov, 316 p. (UIPK, Moscow, 2001) [in Russian].
8. Klymenko Yu. A., Cheremnykh O. K., Yatsenko V. A., Maslova N. V. State and Prospects of Creating New Generation Microsatellites: New Materials, Nanotechnology and Architecture, Kosm. nauka tehnol., 7 (2/3), 53—65 (2001) [in Russian].
9.  Kremenetskij I. O., Cheremnykh O. K. Space weather: mechanisms and manifestations, 144 p. (Nauk. dumka, Kyiv, 2009) [in Ukrainian].
10. Kuznetsov N. V. The radiation conditions at the orbits of spacecrafts,  In  Model of cosmos, Ed. by M. I. Panasyuk, Vol. 1, P. 627—641 (Moscow, 2007) [in Russian].
11. Morozova E.I., Bezrodnikh I.P., Semenov V.T. Radiation risk factors for spacecraft, Voprosy jelektromehaniki. Tr. NPP VNIEM, 112 (5), 35—40 (2009) [in Russian].
12. Novikov L. S. Radiation effects on spacecraft materials, 192 p. (Universitetskaja kniga, Moscow, 2010) [in Russian].
13. Novikov L. S., Voronina E. N.  Prospects for the use of nanomaterials in space technology, 188 p. (Universitetskaja kniga, Moscow, 2008) [in Russian].
14. Novikov L.S., Mileev V.N., Voronina E.N., et al. Radiation Effect on Spacecraft Materials, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, N3, 32—48 (2009) [in Russian].
15. Shilov A.E., Volkov S.N., Bezrodnikh I.P., Semenov V.T. Radiation conditions for far-orbit spacecraft during solar activity maximum, Voprosy jelektromehaniki. Tr. NPP VNIIEM, 115 (2), 47—52 (2010) [in Russian].
 16. Applications of nanotechnology in space developments and systems. Technological analysis,  VDI Technology Center Future Technologies Division, Düsseldorf, Germany. Future Technologies, N 47, 135 p. (2003).
17. Conway B. E. Electrochemical supercapacitors: scientific fundamentals and technological applications, 736 p. (Springer, 1999).
18. Daglis I. A. Effects of space weather on technology infrastructure, 334 p. (NATO Science Series) (Kluwer, Dordrecht, 2005).
19. Desprez P., Barrailh G., Moreau L., et al. Ultracapacitors: a power buffer in satellites, Space Power, Proceedings of the Sixth European Conference. Portugal. European Space Agency, ESA SP-502, P. 23—26 (2002).
20. FreedomCARUltracapacitor test manual,  Idaho National Engineering Laboratory Report, Sep. 21, DOE/NE-ID-11173 (2004).
21. Hadjipaschalis I., Poullikkas A., Efthimiou V. Overview of current and future energy storage technologies for electric power applications,  Renewable and Sustainable Energy Revs., 13, 1513—1522 (2009).
22. Kalugin O. N., Chaban V. V., Loskutov V. V., Prezhdo O. V. Uniform diffusion of acetonitrile inside carbon nano tube favors supercapacitor performance,  Nano Lett.,  N 8, 2126—2130 (2008).
23. Krasheninnikov A. V., Nordlund K. Ion and electron irradiation-inducted effects in nanostructured materials,  J. Appl. Phys., 107, 071301, 70 p. (2010).
24. Maini A. K., Agraval V. Satellite technology: principles and application, 560 p. (John Wiley & Song Ltd, The Atrium. Southern Gate, Chichester, West Sussex, England, 2007).
25. Maletin Y. et al. Proc. 22nd Internat. Seminar on Double Layer Capacitor and Hybrid Energy Storage Devices, 180—185 (Deerfield Beach, FL, 2012).

26. Shojah-Ardalan S., Wilkins R., Machado H., et al. Susceptibility of ultracapacitors to proton and gamma irradiation,  Workshop Record of the 2003 IEEE Radiation Effects Data Workshop, 89—91 (2003).