Studies of MHD oscillations of the Earth’s inner magnetosphere in the RESONANCE mission

1Cheremnykh, ОК, 2Yampolski, Yu.M, 3Agapitov, AV, 2Zalizovski, AV, 3Ivchenko, VN, 3Kozak, LV, 1Parnovski, АS, 4Rapoport, Yu.G, 1Selivanov, Yu.A, 2Koloskov, AV, 5Cheremnykh, SО
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
3Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
4Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
5Space Research Institute of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Kyiv
Kosm. nauka tehnol. 2013, 19 ;(2):05–42
https://doi.org/10.15407/knit2013.02.005
Publication Language: Russian
Abstract: 

The active phase of the international orbital space mission RESONANCE, with the participation of 12 countries, is planned to begin in 2014—2016. Ukrainian scientists are involved in the mission from the preparation phase. They develop theoretical models of phenomena in magnetospheric plasma and in radiation belts, elaborate models of magnetosphereionosphere interactions and of MHD wave generation mechanisms. Some procedures for space and ground-based data interpretation and fusion are improved. On-board magnetometers for the mission satellites are developed at the LC SRI of the NASU and SSAU. We consider the above-mentioned points and determine some problems to be solved during the mission.

Keywords: magnetospheric plasma, on-board magnetometers, radiation belts, RESONANCE mission
References: 
1. Agapitov A. V., Parnowski A. S., Cheremnykh O. K. Spectrum of transversally small-scale perturbations in the inner Earth's magnetosphere. Kinematics Phys. Celestial Bodies, 22 (6), 387 —401 (2006) [in Russian].
2. Agapitov A. V., Cheremnykh O. K. The generation of inherent ULF modes in the Earth's magnetosphere by solar wind.  Kosm. nauka tehnol., 14 (4), 72 —81 (2008) [in Russian].
https://doi.org/10.15407/knit2008.04.072
3. Agapitov O. V., Cheremnykh O. K. Polarization of ULF waves in the Earth's magnetosphere. Kinematics Phys. Celestial Bodies, 27 (3), 17—27 (2011) [in Russian].
http://dx.doi.org/10.3103/S0884591311030020
4. Belej V.S., Galushko V.G., Zalizovskij A.V. et al. Reflectance coefficient of MHD waves from the ionosphere, Geomagnetism and Aeronomy, 37 (6), 91 —98 (1997) [in Russian].
5. Belenov A. F., Ponomarenko P. V., Sinitsyn V. G., Yampol'skii Yu. M. Quasi-periodic variations in the Doppler shift of HF signals scattered by artificial ionospheric turbulence, Izv.vuzov.Radiofizika, 33 (12), 1089 —1095 (1993) [in Russian].
6. Budaev V.P. Generalized scale invariance and log-poisson statistics for turbulence in the scrape-off-layer plasma in the T-10 tokamak, Plasma Physics Reports, 34 (10), 867-884 (2008) [in Russian].
http://dx.doi.org/10.1134/S1063780X08100012
7. Gurevich A. V., Shvarcburg A. V. Nonlinear theory of propagation of radio waves in the ionosphere [Nelinejnaja teorija rasprostranenija radiovoln v ionosphere], 272 p. (Nauka, Moscow, 1973) [in Russian].
8. Zalizovski A. V. The Role of Tropospheric Processes in Forming the Sporadic Layers
of E Ionospheric Region over the Antarctic Peninsula. Radio Physics and Radio Astronomy,  13(1), 26 —38 (2008) [in Russian].
9. Zalizovski A. V., Sinitsin V. G., Yampolski Yu. M.  Polarization of Pc3/Pc4 Geomagnetic Pulsations in the Southern and Northern Hemispheres: Experimental Data and Numerical Simulation. Radio Physics and Radio Astronomy,  6(4), 302 —309 (2001) [in Russian].
10. Zalizovski A. V., Yampolski Yu. M.  The Spread-F Effect as an Indicator of Troposphere – Ionosphere Coupling. Radio Physics and Radio Astronomy,  12(1), 33 —42 (2007) [in Russian].
11. Zalizovski A. V., Yampolski Yu. M., Korepanov V. E., Dotsenko I. F.  Polarization Effects of Pc3, Pc4 Geomagnetic Pulsations Observed at Vernadsky Antarctic Station (“the Sunflower Effect”). Radio Physics and Radio Astronomy,  5(2), 118 —124 (2000) [in Russian].
12. Kozak L. V., Lui A. T. Statistical analysis of plasma turbulence on the basis of satellite measurements of magnetic field. Kinematics Phys. Celestial Bodies, 24 (4), 299 —307 (2008) [in Russian].
http://dx.doi.org/10.3103/S0884591308040041
13. Kozak L.V., Pilipenko V.A., Chugunova O.M., Kozak P.N. Statistical analysis of turbulence in the foreshock region and in the Earth's magnetosheath, Cosmic Research, 49(3), 202 —212 (2011) [in Russian].
http://dx.doi.org/10.1134/S0010952511030063
14. Kozak L.V., Savin S.P., Budaev V.P., Pilipenko V.A., Lezhen L.A. Character of turbulence in the boundary regions of the Earth's magnetosphere, Geomagnetism and Aeronomy, 52 (4), 445-455 (2012) [in Russian].
http://dx.doi.org/10.1134/S0016793212040093
15. Koloskov A. V., Sinitsyn V. G., Gerasimova N. N., Yampolskii Yu. M. ELF resonant cavities in the geospace as space weather indicators.  Kosm. nauka tehnol., 14 (5), 49 —64 (2008) [in Russian].
https://doi.org/10.15407/knit2008.05.049
16. Ljackij V.B, Mal'tsev Yu.P. Magnetosphere-ionosphere interaction [Magnitosferno-ionosfernoe vzaimodejstvie], 192 p. (Moscow, Nauka, 1983) [in Russian].
17. Novikov E.A., Stjuart R.U. The intermittency of turbulence and a range of energy dissipation fluctuations,  Izv.AN SSSR. Ser. Geofiz. N 3, 408 —413 (1964) [in Russian].
18. Parnowski A. S., Cheremnykh O. K. Flute and incompressible perturbations in the Earth's inner magnetosphere. Kinematics Phys. Celestial Bodies, 22 (1), 65 —75 (2006) [in Russian].
19. Pronenko V., Korepanov V. Induction magnetometer “LEMI-606” for “Resonance” experiment. Multisatellite studies of the inner magnetosphere: 2nd Int. Symp. on the Resonance Project, 49-52 (IKI RAN, Kiev, 2012) [in Russian].
20. Cheremnykh O. K. On the problem of resonant MHD-perturbations in the magnetospheric plasma, Kosm. nauka tehnol., 16 (1), 61 —67 (2010) [in Russian].
https://doi.org/10.15407/knit2010.01.061
21. Cheremnykh O. K., Danilova V. D. Transverselly small-skale MHD perturbation in space plasma with magnetic surfaces, Kinematics Phys. Celestial Bodies, 27 (2), 63 —79 (2011) [in Russian].
http://dx.doi.org/10.3103/S0884591311020036
22. Yampolskij Yu.M. "Echo-scattering" HF radio on artificial ionospheric turbulence, Izv.vuzov. Radiofizika, 32 (4), 519 —521 (1989) [in Russian].
23. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. M., et al. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity,  Radio Physics and Radio Astronomy,  9(2), 130 — 151 (2004) [in Russian].
24. Agapitov O., Cheremnykh O. Natural oscillations of the Earth magnetosphere associated with solar wind sudden impulses,  Ukr.Phys.J. 53, 506 —510 (2008).
25. Agapitov O.V., Cheremnykh O.K., Parnowski A.S. Ballooning perturbations in the inner magnetosphere of the Earth: spectrum, stability and eigenmode analysis,  Adv.Space Res., 41, 1682 —1687 (2008).
http://dx.doi.org/10.1016/j.asr.2006.12.040
26. Agapitov O.V., Glassmeier K.-H., Plaschke F., et al. Surface waves and field line resonances, J.Geophys.Res., 114 (2009).
.http://dx.doi.org/10.1029/2008JA013553
27. Agapitov O., Krasnoselskikh V., Dudok de Wit T., et al. Multispacecraft observations of chorus emissions as a tool for the plasma density fluctuations'remote sensing,  J.Geophys.Res., 116, P.A09222 (2011).
http://dx.doi.org/10.1029/2011JA016540
28. Belikovich V.V., Grach S.M., Karashtin A.N., et al. The "Sura" facility: Study of the atmosphere and space (a review), Radiophys.and Quantum Electronics, 50 (7), 497 —526 (2007).
http://dx.doi.org/10.1007/s11141-007-0046-4
29. Boardman A.D., Grymalsky V.V., Kivshar Yu.S., et al. Active and tunable metamaterials,  Laser and Photonics Revs., 5 (2), 287 —307 (2011).
http://dx.doi.org/10.1002/lpor.201000012
30. Boardman A.D., Grimalsky V.V., Rapoport Yu.G. Nonlinear Transformational Optics and Electromagnetic and Acoustic Fields Concentrators,  AIP Conf.Proc. 1398, 120 —122 (2011).
http://dx.doi.org/10.1063/1.3644231
31. Boardman A.D., Hess O., Mitchell-Thomas R.C., et al. Temporal Solitons in Magnetooptic and Metamaterial Waveguides,  Photonics and Nanostructures — Fundamentals and Applications, 8(4), 228 —243 (2010).
32. Bosy V.I., Rapoport Yu.G., Senchenko V.V. FET model taking into account wave characteristics of the active region and input circuits,  IEEE Microwave Theory Tech., 43(7), 1453 —1460 (1995).
http://dx.doi.org/10.1109/22.392902
33. Buttner O., Bauer M., Demokritov S.O., et al. Spatial and spatiotemporal self-focusing of spin waves in garnet films observed by space- and time-resolved Brillouin light scattering,  J.Appl.Phys. 87 (9), 5088 — 5090 (2000).
http://dx.doi.org/10.1063/1.373257
34. Carvet W. The auroral plasma cavity,  Geophys.Res.Lett., N 8, 919 —921 (1981).
35. Cheng C.Z., Chang T.C., Lin C.A, Tsai W.H. Magnetohydrodynamic theory of field line resonances in the magnetosphere, J.Geophys.Res., 98 (7), 11339 —11347 (1993).
http://dx.doi.org/10.1029/93JA00505
36. Chen L., Hasegawa A. A theory of long-period magnetic pulsations. 1.Steady state excitation of field line resonance,  J.Geophys.Res., 79, 1024 — 1032 (1974).
http://dx.doi.org/10.1029/JA079i007p01024
37. Cheremnykh O.K., Ivchenko V.M., Kremenetsky I.A., et al. Reflection of Alfven waves from the ionosphere and active magnetospheric resonator possibility,  Ukr.J.Phys., 45 (11), 1324 —1332 (2000).
38. Cheremnykh O.K., Parnowski A.S. Influence of ionospheric conductivity on the ballooning modes in the inner magnetosphere of the Earth,  Adv.Space Res., 37, 599 —603 (2006).
http://dx.doi.org/10.1016/j.asr.2005.01.073
39. Cheremnykh O.K., Parnowski A.S. Flute and Ballooning Modes in the Inner Magnetosphere of the Earth: Stability and Influence of the Ionospheric Conductivity,  Space Science: New Research, Ed.by Nick S.Maravell, 71 —108 (Nova Science Publishers, New York, 2006).
40. Cheremnykh O.K., Parnowski A.S., Burdo O.S. Ballooning modes in the inner magnetosphere of the Earth,  Planet.and Space Sci., 52, 1217 —1229 (2004).
http://dx.doi.org/10.1016/j.pss.2004.07.014
41. Demekhov A.G., Mogilevsky M.M., Zelenyi L.M. Project "Resonance": main scientific objectives and the experiment design, EPSC Abstracts, 5, EP-SC2010-208 (2010).
42. Demekhov A.G., Trakhtengerts V.Y., Mogilevsky M.M., Zelenyi L.M. Current problems in studies of magnetospheric cyclotron masers and new space project "RESONANCE", Adv.Space Res., 32(3), 355 —374 (2003).
http://dx.doi.org/10.1016/S0273-1177(03)90274-2
43. Duffy P. The acceleration of cometary ions by Alfven waves’.  J.Plasma Phys., 42, 13 25 (1989).
http://dx.doi.org/10.1017/S0022377800014161
44. Dungey J.M. Electrodynamics of the outer magnetosphere, Sci.Rep.69 (Pa.State Ionos.Res.Lab., 1954).
45. Eccles V., Armstrong R. Upper atmospheric effects of the HF active auroral research program ionospheric research instrument (HAARP IRI), Sci.Rep.N 2, 19 p. (Mission Research Corp Nashua NH, 1993).
46. Engebretson M.J., Zanetti L.J., Potemra T.A., Acuna M.H. Harmonically structured ULF pulsations observed by the AMPTE CCE magnetic field experiment, Geophys.Res.Lett., N 13, 905 —908 (1986).
47. Getmantsev G.G., Zuikov N.A., Kotik D.S., et al. Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma, Sov.JETP Lett., 20, 229 —232 (1974) (Engl.Transl.).
48. Grimal’skii V.V., Rapoport Yu.G. Modulation instability of surface plasma waves in the second-harmonic resonance region, Plasma Phys.Reports, 24 (11), 980 —982 (1998).
49. Grimalskiy V.V., Hayakawa M., Ivchenko V.N., et al. Penetration of electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earth-quake,  J.Atmos.and Solar-Terr.Phys., 65(4), 391 —407 (2003).
http://dx.doi.org/10.1016/S1364-6826(02)00341-3
50. Grimalsky V.V., Kremenetsky I., Cheremnykh O.K., Rapoport Yu.G. Spatial and frequency filtration properties of ULF EM radiation of a lithospheric origin in the lithosphere — ionosphere — magnetosphere system,  Seismoelectromagnetics: lithosphere — atmosphere — ionosphere coupling, Eds Ma.Hayakawa, O.A.Molchanov, 363 —370 (TERRAPUB, Tokyo, 2001).
51. Grimalsky V.V., Kremenetsky I.A., Rapoport Yu.G. Excitation of EMW in the lithosphere and propagation into magnetosphere,  Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, 777 —787 (TERRAPUB, Tokyo, 1998).
52. Grimalsky V.V., Kremenetsky I.A., Rapoport Yu.G. Excitation of electromagnetic waves in the lithosphere and their penetration into ionosphere and magnetosphere, J.Atmospheric Electricity, 19 (2), 101 —117 (1999).
53. Grimalsky V.V., Rapoport Yu.G. Nonlinear magnetostatic waves in ferrite films in an inhomogeneous magnetic field, J.Magn.Magn.Mater., 157 /158, 727 —729 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00985-7
54. Hasegawa A., Chen L. Plasma heating by Alfven-wave phase mixing,  Phys.Fluids, 17,  P.1399 (1974).
http://dx.doi.org/10.1063/1.1694904
55. Hollweg J.V. Resonance absorption of propagating fast waves in a cold plasma,  Planet.and Space Sci., 38, 1017 —1030 (1990).
http://dx.doi.org/10.1016/0032-0633(90)90046-S
56. Kepko L., Spence H.E. Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations, J.Geophys.Res., 108, 1257 (2003).
http://dx.doi.org/10.1029/2002JA009676
57. Klimushkin D., Mager P., Glassmeier K. Toroidal and poloidal Alfven waves with arbitrary azimuthal wavenumbers in afinite pressure plasma in the Earth’s magnetosphere,  Ann.geophys., 22, 267 —287 (2004).
http://dx.doi.org/10.5194/angeo-22-267-2004
58. Kossey P.A., Battis J.C. HAARP Diagnostic Instruments; High Frequency Active Auroral Research Program. N AFRL-VS-TR-2003-1570. 71 p. (Air Force Research Lab, Hanscom AFB, MA Space Vehicles Directorate, 2002).
59. Kotsarenko N.Ya., Rapoport Yu.G., Shvidkij A.A., Khotyaintsev Yu.V. Oblique Alfven and magnetosonic solitons and nonlinear structures in magnetized plasmas, Phys.scr., 58, 499 —504 (1998).
http://dx.doi.org/10.1088/0031-8949/58/5/013
60. Kraichnan R.H. Lagrangian — history closure approximation for turbulence,  Phys.Fluids, 8, 575 —598 (1965).
http://dx.doi.org/10.1063/1.1761271
61. Mann I.R., Wright A.N., Mills K.J., Nakariakov V.M. Excitation of magnetospheric waveguide modes by magnetosheath flows,  J.Geophys.Res., 104, 333 (1999).
http://dx.doi.org/10.1029/1998JA900026
62. Mathie R.A., Mann I.R., Menk F.W. Pc5 ULF pulsations associated with waveguide modes observed with the IMAGE magnetometer array,  J.Geophys.Res., 104, 7025 —7036 (1999).
http://dx.doi.org/10.1029/1998JA900150
63. Mathie R.A., Menk F.W., Mann I.R., Orr D. Discrete field line resonances and the Alfven continuum in the outer magnetosphere,  Geophys.Res.Lett., 26, 659 —662 (1999).
http://dx.doi.org/10.1029/1999GL900104
64. Mills K.J., Wirght A.N., Mann I.R. Kelvin — Helmholtz driven modes of the magnetosphere,  Phys.Plasmas, 6, 4070 (1999).
http://dx.doi.org/10.1063/1.873669
65. Mogilevsky M.M., Zelenyi L.M., Demekhov A.G., et al. RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere,  Geophys.Monograph Ser., 199, 117 —126 (2012).
http://dx.doi.org/10.1029/2012gm001334
66. Nishida A. Geomagnetic diagnosis of the magnetosphere, 256 p. (Springer-Verlag, New York, 1978).
http://dx.doi.org/10.1007/978-3-642-86825-2
67. Papadopoulos D., Bernhardt P.A., Carlson H.C., et al. HAARP, research and applications, 19 p. (Naval Research Lab., Washington DC, 1990).
68. Papadopoulos D., Wallace T., McCarrick M., et al. On the Efficiency of ELF/VLF generation using HF heating of the auroral electrojet, Plasma Phys.Reports, 29, 561 —565 (2003).
http://dx.doi.org/10.1134/1.1592554
69. Parnowski A.S. Eigenmode analysis of ballooning perturbations in the inner magnetosphere of the Earth,  Ann.geophys., 25, 1391 —1403 (2007).
http://dx.doi.org/10.5194/angeo-25-1391-2007
70. Ponomarenko P.V., Yampolski Yu.M., Zalizovsky A.V., et al. Interaction between artificial ionospheric irregularities and natural MHD waves,  J.Geophys.Res., 105 (A1), 171 —181 (2000).
http://dx.doi.org/10.1029/1999JA900381
71. Rae I.J., Donovan E.F., Mann I.R., et al. Evolution and Characteristics of Global Pc5 ULF Waves During a High Solar Wind Speed Interval, J.Geophys.Res., 110, A12211 (2005).
72. Rapoport Yu., Boardman A., Grimalsky V., et al. Metamaterials for space physics and the new method for modeling isotropic and hyperbolic nonlinear concentrators,  International Conference on Mathematical Methods in Electromagnetic Theory (MMET), 76 —79 (Kharkiv,2012).
73. Rapoport Yu.G., Hayakawa M., Gotynyan O.E., et al. Stable and unstable plasma perturbations in the ionospheric F region,caused by spatial packet of atmospheric gravity waves,  Phys.Chem.Earth, 34, 508 —515 (2009).
http://dx.doi.org/10.1016/j.pce.2008.09.001
74. Rapoport Yu.G., Sirenko E.K., Fedun V.N. Interaction of magnetosonic solitons with an ion beam in magnetized plasma,  Ukr.J.Phys., 43, 169 —176 (1998).
75. Rapoport Y.G., Zaspel C.E., Grimalsky V.V., Sanchez-Mondragon J . Nonlinear Lorenz lemma with the influence of exchange interaction and propagation of the magnetostatic waves with higher diffraction and dispersion,  14th International Crimean Conference on Microwave and Telecommunication Technology: CriMico 2004, P.361 —363 (Sevastopol, 2004).
http://dx.doi.org/10.1109/crmico.2004.183240
76. Samson J.C., Harrold B.G., Ruohoniemi J.M., Walker A.D.M. Field line resonances associated with MHD waveguides in the magnetosphere,  Geophys.Res.Lett., 19, P.441 (1992).
http://dx.doi.org/10.1029/92GL00116
77. Savin S., Amata E., Zelenyi L., et al. Super fast plasma streams as drivers of transient and anomalous magnetospheric dynamics,  Ann.geophys., 30, 1 —7 (2012).
http://dx.doi.org/10.5194/angeo-30-1-2012
78. She Z., Leveque E. Universal scaling laws in fully developed turbulence, Phys.Rev.Lett., 72, 336 —339 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.336
79. Singer H.J. Multisatellite observations of resonant hydromagnetic waves, Planet.and Space Sci., 30, 1209 (1982).
http://dx.doi.org/10.1016/0032-0633(82)90094-0
80. Sinitsin V.G., Kelley M.C., Yampolski Yu.M., et al. Ionospheric conductivities according to Doppler radar observations of stimulated turbulence,  J.Atmos.and Solar-Terr.Phys., 61, 903 —912 (1999).
http://dx.doi.org/10.1016/S1364-6826(99)00039-5
81. Sinitsin V.G., Yampolski Yu.M., Zalizovski A.V., et al. Spatial field structure and polarization of geomagnetic pulsations in conjugate areas,  J. Atmos. and Solar-Terr. Phys., 65 (10), 1161 —1167 (2003).
http://dx.doi.org/10.1016/j.jastp.2003.08.001
82. Southwood D.J. Some features of field line resonances in the magnetosphere,  Planet.and Space Sci., 22, 483 (1974).
http://dx.doi.org/10.1016/0032-0633(74)90078-6
83. Southwood D.J., Kivelson M.G. The effect of parallel inhomogeneity on magnetospheric hydromagnetic wave coupling, J.Geophys.Res., 91, 6871 (1986).
http://dx.doi.org/10.1029/JA091iA06p06871
84. Streltsov A.V., Pedersen T.R., Mishin E.V., Snyder A.L. Ionospheric feedback instability and substorm development, J.Geophys.Res., 115, A07205 (2010).
http://dx.doi.org/10.1029/2009JA014961
85. Summers D., Ni B., Meredith N.P. Timescales for radiation belt electron accelration and lossw due to resonant wave-particle interactions: 1.Theory, J.Geophys. Res., 112, A04206 (2007).
86. Summers D., Ni B., Meredith N.P. Timescales for radiation belt electron accelration and lossw due to resonant wave-particle interactions.1. Evaluation for VLF chorus, ELF hiss and EMPIC waves, J.Geophys.Res., 112, A04207 (2007).
87. Takahashi K., Cheng C.Z., McEntire R.W., et al. Observation and theory of Pc5 waves with harmonically related transverse and compressional components,  J.Geophys.Res., 95(A2), 977 —989 (1990).
http://dx.doi.org/10.1029/JA095iA02p00977
88. Tamao T. Transmission and coupling resonance of hydromagnetic disturbances in the non-uniform Earth’s magnetosphere,  Sci.Rep.Tohoku Univ. Ser.5, 17, 43 —72 (1965).
89. Trakhtengerts V.Y. Magnetosphere cyclotron maser: Backward wave oscillator generation regime,  J.Geophys.Res., 100 (9), 17205 —17210 (1995).
http://dx.doi.org/10.1029/95JA00843
90. Trakhtengerts V.Yu., Belyaev P.P., Polyakov S.V., et al. Excitation of Alfven waves and vortices in the ionospheric Alfven resonator by modulated powerful radio waves,  J.Atmos.Solar-Terr.Phys., 62, 267 —276 (2000).
http://dx.doi.org/10.1016/S1364-6826(99)00121-2
91. Trakhtengerts V.Yu., Rycroft M.J. Whistler and Alfven mode cyclotron masers in space, 354 p. (Univ.Press, Cambridge, 2008).
http://dx.doi.org/10.1017/CBO9780511536519
92. Treumann R.A. Theory of super-diffusion for the magnetopause,  Geophys.Res.Lett., 24, 1727 — 1730 (1997).
http://dx.doi.org/10.1029/97GL01760
93. Tverskoy B.A. Main mechanisms in the formation of the Earth`s radiation belts,  Revs Geophys., 7 (1-2), 219 —221 (1969).
http://dx.doi.org/10.1029/RG007i001p00219
94. Yampolski Y.M., Beley V.S., Kascheev S.B., et al. Bistatic HF radar diagnostics of induced field aligned irregularities,  J.Geophys.Res., 102 (A4), 7461 — 7467 (1997).
http://dx.doi.org/10.1029/97JA00037
95. Zalizovski A.V. The role of the ozonosphere in the interaction between atmospheric layers as deduced from observation at the Antarctic base "Akademik Vernadsky", Int.J.Remote Sens., 32 (11), 3187 —3197 (2011).