The GNSS data analysis centre of the Main Astronomical Observatory of the NAS of Ukraine: some results of observation reprocessing of GPS observations at permanent stations of the regional network for GPS weeks 1236-1399

1Ishchenko, MV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(6):76–80
https://doi.org/10.15407/knit2012.06.076
Section: Space Geoinformatics and Geodesy
Publication Language: Russian
Abstract: 
Observations of GPS satellites at permanent stations located in Ukraine and in the Eastern Europe were reprocessed with the Bernese GPS Software ver. 5.0 using new models and processing procedures adopted by the International GNSS Service since GPS week 1400. Homogeneous coordinate solution in the IGS05 reference frame and the values of zenith tropospheric refraction for GPS weeks 1236-1399 are obtained. Some results of our comparison for coordinate repeatabilities between reprocessing and regular processing solutions are given
Keywords: GPS-data, IGS05, permanent stations, zenith tropospheric refraction
References: 
1. Ischenko M. V. Quality estimation of reprocessing of GPS observations at the permanent stations of regional network for GPS weeks 1236−1399. Kosm. nauka tehnol., 18 (4), 66—73 (2012) [in Russian].
https://doi.org/10.15407/knit2012.04.066
2. Ischenko M. V. Reprocessing of GPS observations: Influence of calibration models of antenna/radome combinations on permanent GPS station coordinates. Kinematics Phys. Celestial Bodies, 28 (4), 76—82 (2012) [in Russian].
3. Khoda O. A. The processing of EPN benchmark test campaign at the GNSS data analysis centre of the Main Astronomical Observatory. Kosm. nauka tehnol., 18 (4), 59—65 (2012) [in Russian].
https://doi.org/10.15407/knit2012.04.059
4. Khoda O. A. GPS data analysis centre of the Main Astronomical Observatory: Results of observations processing for GPS weeks 1236−1399. Kinematics Phys. Celestial Bodies, 26 (6), 56—67 (2010) [in Russian].
https://doi.org/10.3103/S0884591310060036
5. Hugentobler U., Shaer S., Fridez P. (Eds.) BerneseGPS Software version 4.2, 515 p. (Astronomical Institute, University of Berne, Berne, 2001)
6. Dach R., Hugentobler U., Fridez P., Meindl M. (Eds.) BerneseGPS Software version 5.0, 612 p. (Astronomical Institute, University of Berne, Berne, 2007).
7. Jefferson D., Heflin D., Muellerschoen R. Examining the C1-P1 pseudorange bias.  GPS Solutions, N 4(4), 25—30 (2001).
8. Lyard F., Lefvre F., Letellier T., Francis O. Modeling the global ocean tides: a modern insight from FES2004.  Ocean Dynamics, N 56, 394—415 (2006).
https://doi.org/10.1007/s10236-006-0086-x
9. McCarthy D., Petit G. IERS Conventions.  IERS Technical Note 32. Bundesamt fur Kartographie und Geodäsie, Franfkurt am Main (2004).
10. Niell A. Global mapping functions for the atmosphere delay at radio wavelenghts.  J. Geophys. Res., 101, 3227—3246 (1996).
https://doi.org/10.1029/95JB03048
11. Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites.  The use of artificial satellites for Geodesy, Vol. 15 of Geophysics Monogram Series, AGU, 244—251 (1972).
12. Standish E. The Observational basis for JPL’s DE200, the planetary ephemerides of the astronomical almanac.  Astron. and Astrophys.,  233 (1), 252—271 (1990).
13. Steigenberg P., Rothacher M., Fritsche M., et al. Quality of reprocessed GPS satellite orbits.  J. Geodesy, 83 (3-4), 241—248 (2009).
https://doi.org/10.1007/s00190-008-0228-7