Application of transgenic Arabidopsis thaliana-GFP-ABD2 plants in experiments for the investigation of cytoskeleton in simulated microgravity
Heading:
1Shevchenko, GV, 1Kordyum, ЕL 1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2012, 18 ;(6):51–56 |
https://doi.org/10.15407/knit2012.06.051 |
Publication Language: Russian |
Abstract: Application of transgenic Arabidopsis thaliana-GFP-ABD2 plants in experiments for the study of simulated microgravity (clinorotation) impact on cytoskeleton revealed the interconnection of actin microfilaments with other cytoskeleton elements, in particular with tubulin microtubules. Investigations showed that interconnection between microfilaments and microtubules is essential for cell growth in the distal elongation zone of a root. The interconnection between cytoskeleton elements in the stationary control differs from that under clinorotation. Possible mechanism of such interconnection is discussed.
|
Keywords: cytoskeleton, microfilaments, simulated microgravity, transgenic Arabidopsis thaliana-GFP-ABD2 plants |
References:
1. Tairbekov M. G. Gravity cell biology (theory and experiment). 128 p. (Moscow, 1997) [in Russian].
2. Tairbekov M. G. Possible mechanisms of gravitational sensitivity of cells. Dokl. Akad. nauk, 375 (1), 121 — 124 (2000) [in Russian].
3. Baluška F., Mancuso S., Volkmann D., Barlow P. W. Root apex transition zone: a signalling — response nexus in the root. Trends Plant Sci., 15 (7), 402 — 408 (2010).
https://doi.org/10.1016/j.tplants.2010.04.007
https://doi.org/10.1016/j.tplants.2010.04.007
4. Baluška F., Volkmann D., Barlow P. A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications. J. Plant Growth Regul., 20, 170—181 (2001).
https://doi.org/10.1007/s003440010013
https://doi.org/10.1007/s003440010013
5. Blancaflor E. B. Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.). J. Plant Growth Regul., 19, 406—414 (2000).
https://doi.org/10.1007/s003440000044
https://doi.org/10.1007/s003440000044
6. Blancaflor E. B. The cytoskeleton and gravitropism in higher plants. J. Plant Growth Regul., 21, 120—136 (2002).
https://doi.org/10.1007/s003440010041
https://doi.org/10.1007/s003440010041
7. Blancaflor E. B., Wang Y-S., Motes C. M. Organization and function of the actin cytoskeleton in developing root cells. Int. Rev. Cytol., 252, 219—264 (2006).
https://doi.org/10.1016/S0074-7696(06)52004-2
https://doi.org/10.1016/S0074-7696(06)52004-2
8. Collings D., Lill A., Himmelspach R., Wasteneys G. Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytologist., 170, 275—290 (2006).
https://doi.org/10.1111/j.1469-8137.2006.01671.x
https://doi.org/10.1111/j.1469-8137.2006.01671.x
9. Fu Y., Gu Y., Zheung Z., Wasteneys G., Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell, 120, 687—700 (2005).
https://doi.org/10.1016/j.cell.2004.12.026
https://doi.org/10.1016/j.cell.2004.12.026
10. Higaki T., Sano T., Hasezawa S. Actin microfilament dynamics and actin side-binding proteins in plants. Curr. Opin. Cell Biol., 10 (6), 549—556 (2007).
https://doi.org/10.1016/j.pbi.2007.08.012
https://doi.org/10.1016/j.pbi.2007.08.012
11. Kordyum E. L. Biology of plant cells in microgravity and under clinostating. Int. Rev. Cytol., 171, 1—78 (1997).
https://doi.org/10.1016/S0074-7696(08)62585-1
https://doi.org/10.1016/S0074-7696(08)62585-1
12. Lang T., Wacker I., Wunderlich I., et al. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys. J., 78, 2863 —2877 (2000).
https://doi.org/10.1016/S0006-3495(00)76828-7
https://doi.org/10.1016/S0006-3495(00)76828-7
13. Li Ya., Shen Yu, Cai Ch., Zhong Ch., Zhu L., Yuan M., Rena H. The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell, 22, 2710—2726 (2010).
https://doi.org/10.1105/tpc.110.075507
https://doi.org/10.1105/tpc.110.075507
14. Lloyd C. W., Chan J. Microtubules and the shape of plants to come. Nat. Rev. Mol. Cell Biol., 5, 13 —23 (2004).
https://doi.org/10.1038/nrm1277
https://doi.org/10.1038/nrm1277
15. Mancuso S., Marras A. M., Magnus V., Baluška F. Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Analytical Biochemistry, 341, 344—351 (2005).
https://doi.org/10.1016/j.ab.2005.03.054
https://doi.org/10.1016/j.ab.2005.03.054
16. Muday G. K., Murphy A. S. An emerging model of auxin transport regulation. Plant Cell, 14, 293— 299 (2002).
https://doi.org/10.1105/tpc.140230
https://doi.org/10.1105/tpc.140230
17. Petraśek J., Schwarzerova K. Actin and microtubule cytoskeleton interactions. Curr. Opin. Plant Biol., 12, 728—734 (2009).
https://doi.org/10.1016/j.pbi.2009.09.010
https://doi.org/10.1016/j.pbi.2009.09.010
18. Saedler R., Mathur N., Srinivas B. P., et al. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. Plant Cell Physiol., 45, 813—822 (2004).
https://doi.org/10.1093/pcp/pch103
https://doi.org/10.1093/pcp/pch103
19. Sampathkumar A., Lindeboom J., Debolt S., et al. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell, 23, 2302—2313 (2011).
https://doi.org/10.1105/tpc.111.087940
https://doi.org/10.1105/tpc.111.087940
20. Schwab B., Mathur J., Saedler R., et al. Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol. Gen. Genomics, 269, 350—360 (2003).
https://doi.org/10.1007/s00438-003-0843-1
https://doi.org/10.1007/s00438-003-0843-1
21. Shevchenko G. Patterns of cortical microtubules formed in epidermis of Beta vulgarisroots under clinorotation. Adv. Space Res., 24, 739—742 (1999).
https://doi.org/10.1016/S0273-1177(99)00407-X
https://doi.org/10.1016/S0273-1177(99)00407-X
22. Shevchenko G., Kalinina Ia., Kordyum E. L. Interrelation between microtubules and microfilaments in the elongation zone of Arabidopsisroot under clinorotation. Adv. Space Res., 39, 1171—1175 (2007).
https://doi.org/10.1016/j.asr.2007.02.072
https://doi.org/10.1016/j.asr.2007.02.072
23. Smith L. G., Oppenheimer D. G. Spatial control of cell expansion by the plant cytoskeleton. Annu. Rev. Cell Dev. Biol., 21, 271—295 (2005).
https://doi.org/10.1146/annurev.cellbio.21.122303.114901
https://doi.org/10.1146/annurev.cellbio.21.122303.114901
24. Wang Y. S., Yoo C. M., Blancaflor E. B. Improved imaging of actin filaments in transgenic Arabidopsisplants expressing a green f luorescent protein fusion to the C- and N-termini of the fimbrin actin-binding domain. New Phytol., 177, 525—536 (2008).
25. Wasteneys G., Galway M. Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu. Rev. Plant Biol., 54, 691—722 (2003).
https://doi.org/10.1146/annurev.arplant.54.031902.134818
https://doi.org/10.1146/annurev.arplant.54.031902.134818
26. Wasteneys G. O., Yang Z. New views on the plant cytoskeleton. Plant Physiol., 136, 3884—3891 (2004).