A small-sized device for monitoring of high-energy electrons and nuclei in the outer space
Heading:
1Dudnik, OV, 2Prieto, M, 1Kurbatov, EV, 2Sanchez, S, 3Timakova, TG, 3Titov, KG, 2Parra, P 1Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkiv, V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine 2Space Research Group, University. Alcala, Alcala de Henares, Spain 3V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine |
Kosm. nauka tehnol. 2012, 18 ;(6):22–34 |
https://doi.org/10.15407/knit2012.06.022 |
Publication Language: Russian |
Abstract: We present the concept of the compact on-board device SIDRA for measurements of energetic charged particle fluxes in the outer space and first results of laboratory tests for separate instrument’s units. The necessity to elaborate the spectrometer of such a type is substantiated and some actual problems to be solved with the use of the device are listed. The block diagram is presented and the modules and components of the device SIDRA are described. We discuss some results of computer simulation, of measurements for the basic characteristics of charge-to-voltage converters, shapers, and sample and hold apparatus. Some results of tests for electromagnetic compatibility with other payload and with the help of charge particle accelerator are also considered. The features of the software for the digital processing module prototype as well as the device operation modes are described
|
Keywords: charged particle fluxes, on-board device SIDRA |
References:
1. Dudnik O. V., Podgorski P., Sylwester J., et al. Investigation of electron belts in the Earth's magnetosphere with the help of X-ray spectrophotometer SphinX and satellite telescope of electrons and protons STEP-F: preliminary results, Kosm. nauka tehnol., 17 (4), 14—25 (2011) [in Russian].
https://doi.org/10.15407/knit2011.04.014
https://doi.org/10.15407/knit2011.04.014
2. Dudnik O.V., Podgorski P., Sylwester J., et al. X-ray spectrophotometer SphinX and particle spectrometer STEP-F of the satellite experiment CORONAS-PHOTON. Preliminary results of the joint data analysis. Astron. vestnik, 46 (2), 173—183 (2012) [in Russian].
https://doi.org/10.1134/s0038094612020025
https://doi.org/10.1134/s0038094612020025
3. Sarkisian L. A., Kiryanov E. F., Vorob'ev Ju. A. Modernization of one hundred and twenty-centimeter cyclotron. Instruments and Experimental Techniques, N 1, 19—21 (1979) [in Russian].
4. Yurov V. N., Kotov Yu. D., Glyanenko A. S. et al. Scientific equipment "Sunny monitor" for the study of radiation conditions near space. Nuclear physics and engineering, 2 (4), 314—319 (2011) [in Russian].
5. Agostinelli S., Allison J., Amako K., et al. Geant4-a simulation toolkit. Nucl. Instrum. Meth. A, 506 (3), 250—303 (2003).
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
6. Dotsenko O. V., Dudnik O. V., Meziat D., Prieto M. Concept of application of the SIDRA instrument to ensure safe operation of a satellite. 9th Ukrainian Conference on space research, Abstracts, P. 76 (2009).
7. Dudnik O. V., Bilogub V. V., Kurbatov E. V., et. al. Compact on-board instrument SIDRA for measurement of particle fluxes & dose rates – concept and first model. 9th Ukrainian Conference on space research. Abstracts, P. 78 (2009).
8. Dudnik O. V., Meziat D., Prieto M. The concept of compact on-board instrument for measurements of particle fluxes & dose rates. Scientific Session MEPHI-2009: Abstracts, 2, P. 151 (2009) [in Russian].
9. Dudnik O. V., Prieto M., Kurbatov E. V., et al. First concept of compact instrument SIDRA for measurements of particle fluxes in the space. J. Kharkiv University. Phys. Ser. «Nuclei, Particles, Fields», 969, N 3(51), 62—66 (2011).
10. Koons H. C., Gorney D. J. Relationship between electrostatic discharges on spacecraft P78-2 and the electron environment. J. Spacecraft Rockets, 28 (6), 683—688 (1991).
https://doi.org/10.2514/3.26300
https://doi.org/10.2514/3.26300
11. Leung P., Whittlesy A. C., Garrett H. B., Robinson P. A. Environment-induced electrostatic discharges as the cause of Voyager I power-on resets. J. Spacecraft Rockets, 28 (3), 323—330 (1986).
https://doi.org/10.2514/3.25805
https://doi.org/10.2514/3.25805
12. Prieto M., Guzman D., Garcia J. I., et. al. Control Unit of the SIDRA Scientific Instrument. Proc. of 9th Conference «Jornadas de Computacion Reconfigurable y Aplicaciones», Alcala de Henares, Spain, 475—484 (2009).
13. Renker D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl. Instrum. Meth. A, 567 (1), 48—56 (2006).
https://doi.org/10.1016/j.nima.2006.05.060
https://doi.org/10.1016/j.nima.2006.05.060
14. Vacheret A., Barker G. J., Dziewiecki M., et. al. Characterization and simulation of the response of Multi-Pixel Photon Counters to low light levels. Nucl. Instrum. Meth. A, 656 (1), 69—83 (2011).
https://doi.org/10.1016/j.nima.2011.07.022
https://doi.org/10.1016/j.nima.2011.07.022
15. Violet M. D., Frederickson A. R. Spacecraft anomalies on the CRRES satellite correlated with the environment and insulator samples. IEEE Trans. Nucl. Sci., 40 (6), 1512—1519 (1993).
https://doi.org/10.1109/23.273511