Modeling of probe measurements of plasma environment parameters onboard the spacecraft «Sich-2»

1Shuvalov, VA, 2Korepanov, VE, 2Lukenyuk, AA, 1Tokmak, NA, 3Kochubey, GS
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine
3Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(6):05–13
Section: Space and Atmospheric Physics
Publication Language: Russian
We developed a procedure for the numerical and physical (set) modeling of the probe measurements of environment parameters for the spacecraft «Sich-2». A correlation between the calculated and measured values of the equilibrium potential of the insulated sphere (EZ probe) testifies that the modeling procedure is correct and the precision of the determination of electron temperature and plasma environment concentration in the polar orbit of the spacecraft «Sich-2» is acceptable
Keywords: electron temperature and concentration, environment parameters, set modeling
1. Akishin A. I., Novikov L. S. The emission process when exposed to the space environment factors, material. Space Technology and Materials, 85—95 (Nauka, Moscow, 1982) [in Russian].
2. Alfvén H., Fälthammar C.-G. Cosmical Electrodynamics: Fundamental Principles, 260  p. (Mir, Moscow, 1967) [in Russian].
3. Al'pert Ya. L., Gurevich A. V., Pitaevskij L. P. Artificial satellites in low-density plasma, 260 p. (Nauka, Moscow, 1964) [in Russian].
4. Baksht F. G., Dyuzhev G. A., Cirkel' B. I. et al. Probe diagnostics of low-temperature plasma in a magnetic field. Joural Techn. Physics, 47 (11), 2269—2279 (1977) [in Russian].
5. Granovskij V. A. Electric current in the gas, 543 p. (Gostehizdat, Moscow, Leningrad, 1952) [in Russian].
6. Gubsky V.F. The magnetic field effect on measurements of electron density and temperature by cylindrical probes in the Earth ionosphere. Solar-Terrestrial Physics, is. 12-1, 261—269 (2008) [in Russian].
7. Gurevich A. V., Pitaevskii L. P., Smirnova V. V. Ionospheric aerodynamics, Uspehi fiz. nauk, 99 (1), 3—49 (1969) [in Russian].
8. Devyatov A. M., Mal'kov M. A. Diagnostics of plasma in a magnetic field. Flat probe.  Izv. vuzov. Fizika, N 3, 29—34 (1984) [in Russian].
9. ECSS-E-10-04A. Space engineering: Space environment. [Standard]  from 21 January 2000, 219 p. (ESTEC, Noordwijk, 2000) [in Russian].
10. Kozlov O. V. Plasma electric probe, 291 p. (Atomizdat, Moscow, 1969) [in Russian].
11. Kotel'nikov M.V. The current-voltage characteristics of a cylindrical probe in flows of collisional and collisionless plasma. High Temperature, 46 (4), 629-632 (2008) [in Russian].
12. Moskalenko A. M. To the theory of the cylindrical probe, Cosmic Research,  17(1), 51— 59 (1979) [in Russian].
13. Novikov L. S., Milev V. A., Maklecov A. A. et al. Mathematical modeling of electrification spacecraft.  In  Model of cosmos, Vol. 2: The impact of the space environment on materials and equipment spacecraft, Ed. by L. S. Novikov, P. 276—314 (Vol. 1-2; Vol. 2) (KDU, Moscow, 2007) [in Russian].
14. Rajzer Ju. P. Physics of gas discharge, 592 p. (Nauka, Moscow, 1987) [in Russian].
15. Smirnova V. V. To the hot probe and probe photo theory.  Geomagnetism and Aeronomy, 6 (2), 276—283 (1966) [in Russian].
16. Smirnova N.F., Stanev G. Determination of photoelectronic current density on the basis of comparison between MEF-2 and TS-7 probe measurements of Interball-2 satellite potential relative to plasma. Solar-Terrestrial Physics,  is. 12-1, 186—189 (2008) [in Russian].
17. Torkar K., Jeszenszky H., Veselov M.V., et al. Spacecraft potential measurements on board Interball-2 and derived plasma densities. Cosmic Research, 37 (6), 644—653 (1999) [in Russian].
18. Shuvalov V. A. On the accuracy of calculating the ion density at a flow of bodies rarefied plasma flow. Geomagnetism and Aeronomy, 17 (6), 1040—1043 (1977) [in Russian].
19. Shuvalov V. A. The structure of the nearly trace after the cylinder in the stream of non-equilibrium rarefield plasma. Geomagnetism and Aeronomy, 20 (3), 425—429 (1980) [in Russian].
20. Shuvalov V. A. Modeling the interaction of bodies with the ionosphere, 180 p. (Nauk. dumka, Kiev, 1995) [in Russian].
21. Shuvalov V. A., Zeldina E. A. About influence of ion density distribution on the structure of electrostatic field on the trace after satellite. Geomagnetism and Aeronomy, 15 (4), 627—632 (1975) [in Russian].
22. Shuvalov V.A., Kochubei G.S., Priimak A.I., et al. Radiation Electrification of Spacecraft Leeward Surfaces by Auroral Electrons in the Ionosphere. Cosmic Research, 41 (4), 438—448 (2003) [in Russian].
23. Shuvalov V.A., Kochubei G.S., Priimak A.I., et al. Contact Diagnostics of High-Velocity Flows of Rarefied Plasma. High Temperature, 43 (3), 343—351 (2005) [in Russian].
24. Shuvalov V.A., Lazuchenkov D.N., Kochubei G.S., Nosikov S.V. A calorimetric probe diagnostics for neutral and charged components of a rarefied plasma flow, Instruments and Experimental Techniques, 53 (3),  80—87  (2010) [in Russian].
25. Shuvalov V. A., Tokmak N. A., Pismenny N. I., Kochubey G. S. Synergetic effect of atomic oxygen flow and vacuum ultraviolet flux on spacecraft polyimide films. Kosm. nauka tehnol., 18 (3), 10—19 (2012) [in Russian].
26. Anderson P. S. A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO.  Proc. 7-th Spacecraft Charging Technology. Conf. 2001. ESA. Sp.476, P. 331—336.
27. Anderson P. S., Koons H. C. A spacecraft charging anomaly on a DMSP satellite in a aurora.  J. Spacecraft and Rockets, 33 (5), 734—738 (1996).
28. Davies R. E., Dennison J. R. Evolution of secondary electron emission characteristics of spacecraft surfaces.  J. Spacecraft and Rockets, 34 (4), 571—574 (1997).
29. Godard R., Laframboise J. G. Total current to cylindrical collectors in collision less plasma. Planet. Space Sci., 31 (3), 275—283 (1983).
30. Gussenhoven M. S., Hardy D. A., Rick F., et al. High-level charging in the low-altitude polar auroral environment.  J. Geophys. Res.,  90, 11009—11029 (1985).
31. Labramboise J. G., Luo J. High-voltage polar-orbit and beam-induced charging of a dielectric spacecraft: A Wakeinduced barrier effect mechanism. J. Geophys. Res., 94A (7), 9033—9048 (1989).
32. Laframboise J. G. Theory of spherical and cylindrical Langmuir probes in a collisionless plasma at rest.  Rarefied gas dynamics, Vol. 2, P. 22—44 (Acad. Press, N.-Y., 1965).
33. Lebreton J. P., Stverak S., Travnicek P., et. al. The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results.  Planet. and Space Sci., 54, 472—487 (2006).
34. Makita H., Kuriki K. Current collection by spherical Langmuir probes drifting in a collisionless plasma. Phys. Fluids, 21 (8), 1279—1286 (1978). 
35. McDonald P., Smetana F. Results of a numerical experiment to determine the current collected by charged cylinder in a collisionless plasma stream. Rarefied gas dynamics, Vol. 2, P. 1627—1636 (Acad. Press, N.-Y., 1969).
36. Parker L. W., Murphy B. L. Potential buildup on an electron – emitting ionosphere satellite.  J. Geophys. Res., 72 (5), (1967).
37. Pedersen A., Cattell C. A., Falthammar C. G., et. al. Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE Satellites. Space Sci. Revs., 37, 269—283 (1984).

38. Rubinstein J., Laframboise J. G. Theory of a spherical probe in a collisionless magnetoplasma. Phys. Fluids, 25 (7), 1174—1182 (1982).