Sensor spectral response calibration of the «Sich-2» multispectral satellite system from ground-based spectrometry measurements: preliminary results

Popov, MA, 1Stankevich, SA, 2Zyelyk, Ya.I, Shklyar, SV, 2Semeniv, OV
1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
2Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(5):59–65
https://doi.org/10.15407/knit2012.05.059
Section: Spacecrafts and Payloads
Publication Language: Ukrainian
Abstract: 
We present a method for the sensor spectral response calibration of the «Sich-2» multispectral satellite system on the basis of satellite imaging for ground calibration test sites. A special parameterization of spectral response functions of the multispectral sensor is proposed. The parameterization allows one to solve analytically a system of equations for optical radiation transfer. We discuss our preliminary results for the sensor spectral response calibration of the «Sich-2» multispectral satellite system which are obtained from actual imagery and ground spectrometry measurements �в’язати систему рівнянь переносу оптичного випромінювання аналітично. Наведено попередні результати калібрування спектральної чутливості сенсора багатоспектральної супутникової системи «Січ-2» за реальними знімками та наземними спектрометричними вимірюваннями
Keywords: satellite imaging, the sensor spectral response, the «Sich-2» multispectral satellite system
References: 
1. Lyalko V.I., Popov M.O. (Eds.) Multispectral remote sensing in nature management, 360 p. (Nauk.dumka, Kyiv, 2006) [in Ukrainian].
2. Vavaev V. A., Vasileysky A. S., Zhukov B. S., et al. On-ground calibration of KMSS cameras for Meteor-M No. 1. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa,  6 (1), 251—258 (2009) [in Russian].
3. Kriksunov L. Z. Handbook on the basics of infrared technology, 400 p. (Sov. radio, Moscow, 1978) [in Russian].
4. Stankevych S. A. Identification of additional distinctive features objects results bahatozonalnoho remote monitoring in the infrared spectral range.  Mater. National  Academy of Defense of Ukraine, Is. 23, 92—99 (1999) [in Ukrainian].
5. Stankevich S. A. Informativity of Earth remote sensing optical bands: Practical algorithms. Kosm. nauka tehnol., 14 (2), 22—27 (2008) [in Russian].
https://doi.org/10.15407/knit2008.02.022
6. Stankevich S.A., Titarenko O.V., Shklyar S.V. Field spectrometry effective data processing in the natural resource management. Dopovidi NAN Ukrai'ny, N 12, 110—115 (2010) [in Ukrainian].
7. Tjagur V.M., Lyholit M.I., Kolobrodov V.G. Optical systems of space multispectral scanners. Research Bulletin of NTUU "KPI", No.6, P. 125 —132 (2006) [in Ukrainian].
8. Biggar S. F., Slater P. N., Gellman D. I. Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4—1.1 μm range.  Remote Sens. Environ., 48 (2), 245— 252 (1994).
https://doi.org/10.1016/0034-4257(94)90145-7
9. Clark R. N., Swayze G. A., Wise R., et al. USGS digital spectral library splib06a / USGS Digital Data Series 231, 1254 p. (2007).
10. Schowengerdt R. A. Remote Sensing: Models and Methods for Image Processing, 560 p. (Academic Press, San Diego, 2007).

11. Staenz K., Secker J., Gao B.-C., et al. Radiative transfer codes applied to hyperspectral data for the retrieval of surface reflectance.  ISPRS J. Photogrammetry and Remote Sens., 57 (3), 194—203 (2002).
https://doi.org/10.1016/S0924-2716(02)00121-1