Distant troposphere-stratosphere teleconnections from 30-year satellite measurements of the antarctic ozone

1Kravchenko, VO, 1Yevtushevskyi, OM, 2Milinevsky, GP
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(5):48–58
https://doi.org/10.15407/knit2012.05.048
Section: Study of the Earth from Space
Publication Language: Ukrainian
Abstract: 
We analyzed a response of the Antarctic ozone to surface temperature variations in the Tropical Pacific during the existence of the ozone hole. The tropical Pacific region is characterized by a large variability in sea surface temperature which causes global impact on the atmospheric circulation. We studied the period from 1980 to 2010. Total ozone satellite measurements made in October were compared with the tropical temperature values for the 18 preceding months. We revealed the maximum of the coefficient of the correlation between the ozone concentration over the West Antarctica in October and the surface temperature in the Central Pacific (160–220º E) in June, four months earlier (r = 0.7). Negative correlation over the East Antarctica was observed. Because of this, the zonal mean ozone data are less suitable for an estimation of the tropical thermal anomaly influence on the Antarctic stratosphere and for an analysis of the propagation pathways for the related disturbances
Keywords: Antarctic ozone, surface temperature of Pacific, total ozone
References: 
1. Agapitov O. V., Grytsai A. V., Salyuk D. A. Large-scale Ross-by waves in the Antarctic stratosphere, Kosm. nauka tehnol., 16 (5), 5—11 (2010) [in Ukrainian].
https://doi.org/10.15407/knit2010.05.005
2. Aleksandrov E. L., Izrael' Iu. A., Karol' I. L., Khrgian A. Kh. Earth's ozone shield and its changes, 288 p. (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].
3.  Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., et al. (Eds.) Atmosphere Handbook, 510 p.  (Gidrometeoizdat, Leningrad, 1991) [in Russian].
4. Goncharova L. D., Serga E. M., Shkol'nyj Je. P. Climate and atmospheric general circulation, 251 p. (KNT, Kyiv, 2005) [in Ukrainian].
5. Zhadin E. A. Effect of interspecific variation in the surface temperature of the ocean circulation of the stratosphere and the ozone layer: Extended abstract of Doctors thesis,  MGU im. M. V. Lomonosova, 28 p. (Moscow, 2004) [in Russian].
6. Isaev A. A. Statistics in meteorology and climatology, 248 p. (Izd-vo MGU, Moscow, 1988) [in Russian].
7. Shkolniy E.P., Burgaz A.A., Galich E.A. The statistical structure of total maintenance ozone fields in atmosphere of the western sector of South hemisphere. Ukr. gidrometeorologichnyj zhurn., N 6, 35—53 (2010) [in Russian].
8. Allen D. R., Bevilacqua R. M., Nedoluha G. E., et al. Unusual stratospheric transport and mixing during the 2002 Antarctic winter.  Geophys. Res. Lett., 30 (12), P. 1599 (2003),
https://doi.org/10.1029/2003GL017117
9. Da Silva A. M., Lindzen R. S. On the establishment of stationary waves in the Northern Hemisphere winter.  J. Atmos. Sci., 50 (1), 43—61 (1993).
https://doi.org/10.1175/1520-0469(1993)050<0043:OTEOSW>2.0.CO;2
10. Grassi B., Redaelli G., Visconti G. Tropical SST preconditioning of the SH polar vortex during winter 2002.  J. Climate, 21 (20), 5295—5303 (2008).
https://doi.org/10.1175/2008JCLI2136.1
11. Grassi B., Redaelli G., Visconti G. Evidence for tropical SST influence on Antarctic polar atmospheric dynamics.  Geophys. Res. Lett., 36, P. L09703 (2009),
https://doi.org/10.1029/2009GL038092
12. Grytsai A. V., Evtushevsky O. M., Agapitov O. V., et al. Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring.  Ann. Geophys.,  25 (2), 361—374 (2007).
https://doi.org/10.5194/angeo-25-361-2007
13. Hardiman S. C., Butchart N., Osprey S. M., et al. The climatology of the middle atmosphere in a vertically extended version of the Met Office’s climate model. Part I: Mean state.  J. Atmos. Sci., 67 (5), 1509—1525 (2010).
https://doi.org/10.1175/2009JAS3337.1
14. Kalnay E., Kanamitsu M., Kistler R., et al. The NCEP/ NCAR 40-Year Reanalysis Project.  B. Amer. Meteor. Soc., 77 (3), 437—471 (1996).
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
15. Kodera K., Yamazaki K. A possible influence of sea surface temperature variation on the recent development of ozone hole.  J. Met. Soc. Jap., 67 (3), 465—472 (1989).
16. Lin P., Fu Q., Hartmann D. Impact of tropical SST on stratospheric planetary waves in the Southern Hemisphere.  J. Climate, E-View (2012),
https://doi.org/10.1175/JCLI-D-11-00378.1
17. Mo K. C., Higgins W. The Pacific—South American Modes and tropical convection during the Southern Hemisphere winter.  Mon. Weather Rev., 126 (6), 1581—1596 (1998).
https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2
18. Nishii K, Nakamura H. Tropospheric influence on the diminished Antarctic ozone hole in September 2002.  Geophys. Res. Lett.,  31 (16), P. L16103 (2004),
https://doi.org/10.1029/2004GL019532
19. Peters D., Vargin P., Körnich H. A study of the zonally asymmetric tropospheric forcing of the austral vortex splitting during September 2002.  Tellus., 59 A (3), 384—394 (2007).
20. Randel W. J., Cobb J. B. Coherent variations of monthly mean total ozone and lower stratospheric temperature.  J. Geophys. Res., 99 (D3), 5433—5447 (1994).
https://doi.org/10.1029/93JD03454
21. Ren R.-C., Cai M., Xiang C., Wu G. Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies.  Clim. Dyn., 38 (7-8), 1345—1358 (2012).
https://doi.org/10.1007/s00382-011-1137-7
22. Schneider D. P., Deser C., Okumura Y. An assessment and interpretation of the observed warming of West Antarctica in the austral spring.  Clim. Dyn.,  38 (1-2), 323—347 (2012).
https://doi.org/10.1007/s00382-010-0985-x
23. Schoeberl M. R. Stratospheric warmings: observations and theory.  Revs Geophys. and Space Phys., 16 (4), 521—538 (1978).
https://doi.org/10.1029/RG016i004p00521
24. Scientific Assessment of Ozone Depletion: 2010. Report N 52. (World Meteorological Organization, Geneva, 2011).
25. Shindell D. T., Wong S., Rind D. Interannual variability of the Antarctic ozone hole in a GCM. Part I: The influence of tropospheric wave variability.  J. Atmos. Sci.,  54 (18), 2308—2319 (1997).
https://doi.org/10.1175/1520-0469(1997)054<2308:IVOTAO>2.0.CO;2
26. Shindel, D. N., Rind D., Balachandran N. Interannual variability of the Antarctic ozone hole in a GCM. Part II: A comparison of unforced and QBO-induced variability.  J. Atmos. Sci., 56 (12), 1873— 1884 (1999).
https://doi.org/10.1175/1520-0469(1999)056<1873:IVOTAO>2.0.CO;2
27. Stolarski R. S., Frith S. M. Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: the importance of instrument drift uncertainty.  Atmos. Chem. Phys., 6 (12), 4057—4065 (2006).
https://doi.org/10.5194/acp-6-4057-2006
28. van der A R. J., Allaart M. A. F., Eskes H. J. Multi sensor reanalysis of total ozone.  Atmos. Chem. Phys., 10 (22), 11277—11294 (2010).
https://doi.org/10.5194/acp-10-11277-2010
29. Wirth V. Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature.  J. Geophys. Res.,  98D (5), 8873—8882 (1993).