Generation of alfven waves in plasma sheet of Earth’s magnetosphere tail

1Malovichko, PP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(5):41–47
https://doi.org/10.15407/knit2012.05.041
Section: Space Astronomy
Publication Language: Russian
Abstract: 
We consider current instabilities of Alfven waves in the Earth’s magnetosphere tail, which are caused by proton beams propagating in the plasma sheet boundary layer. The increment is found and instability growth rate is estimated. It is shown that such generation mechanism of Alfven waves is very effective and can lead to the wave generation even at very small currents
Keywords: Alfven waves, current instabilities, Earth's magnetosphere
References: 
1. Aleksandrov A. F., Bogdankevich L. S., and Rukhadze A. A. Principles of Plasma Electrodynamics, 407 p. (Vysshaya Shkola, Moscow, 1978) [in Russian].
2. Vojtenko Yu. M., Koutz  S. V., Malovichko P. P., Yukchimuk  A. K. Kinetic Properties of Alfven Waves: Preprint No. ITP-90-75R (Institute for Theoretical Physics AS USSR) , 20 p. (Kiev, 1990) [in Russian].
3. Zelenyj L. M. The dynamics of plasma and magnetic fields in Earth's magnetotail, Ed. by R. Z. Sagdeev,  Itogi nauki i tehniki,  VINITI. Issled. kosmich. prostranstva, 24, 58—186 (1986) [in Russian].
4. Malovichko P. P. In Space Plasma Physics: Proceedings of International seminar, 230—234 (NSAU, Kiev, 1994) [in Russian].
5. Malovichko P. P. Propagation of Alfven waves in the boundary region of Earth magnetosphere tail plasma layer. Geomagnetism and Aeronomy, 35 (6), 89—95 (1995) [in Russian].
6. Malovichko P. P., Yukhimuk A. K. Current instability and Alfvén waves in the coronal loops. Kinematika Fiz. Nebesnykh Tel, 8 (1), 20–23 (1992) [in Russian].
7. Broughton M. C., Engebretson M. J., Glassmeier K., Y., et al. Ultra-low-frequency waves and associated wave vectors observed in the plasma sheet boundary layer by Cluster.  J. Geophys. Res., 113, P. A12217 (2008).
https://doi.org/10.1029/2008JA013366
8. Denton R. E., Engebretson M. J., Keiling A., et al. Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis.  J. Geophys. Res., 115, P. A12224 (2010).
https://doi.org/10.1029/2010JA015928
9. Engebretson M. J., Kahlstorf C. R. G., Posch J. L., et al. Multiple harmonic ULF waves in the plasma sheet boundary layer observed by Cluster.  J. Geophys. Res., 115, P. A12225 (2010).
https://doi.org/10.1029/2010JA015929
10. Estman T. E., Frank L. A., Huang C. Y. The boundary layers as the primary transport regions of the Earth’s 8. magnetotail. Univ. of Iowa. Preprint 83-07 (February 1985).
11. Grigorenko E. E., Burinskaya T. M., Shevelev M., et al. Large-scale fluctuations of PSBL magnetic flux tubes induced by the field-aligned motion of highly accelerated ions.  Ann. Geophys., 28 (6), 1273—1288 (2010).
https://doi.org/10.5194/angeo-28-1273-2010
12. Grigorenko E. E., Hoshino M., Hirai M., et al. «Geography» of ion acceleration in the magnetotail: line versus current sheet effects.  J. Geophys. Res., 114, P. A03203 (2009).
https://doi.org/10.1029/2008JA013811
13. Grigorenko E. E., Sauvaud J.-A., Zelenyi L. M. Spatialtem poral characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail.  J. Geophys. Res., 112, P A05218 (2007).
https://doi.org/10.1029/2006JA011986
14. Keiling A., Parks G. K., Wygant J. R., et al. Some properties of Alfvén waves: Observations in the tail lobes and the plasma sheet boundary layer.  J. Geophys. Res., 110, P. A10S11 (2005).
https://doi.org/10.1029/2004JA010907
15. Keiling A., Rème H., I. Dandouras, et al. New properties of energy-dispersed ions in the plasma sheet boundary layer observed by Cluster.  J. Geophys. Res., 109, P. A05215 (2004).
https://doi.org/10.1029/2003JA010277
16. Lui A. T. Y. Parameter extraction of source plasma from observed particle velocity distribution.  Geophys. Res. Lett., 33, P. L21108 (2006).
https://doi.org/10.1029/2006GL027922
17. Lui A. T. Y., Hori T. Phase space density analysis of energy transport in the Earth’s magnetotail.  Space Sci. Rev., 122 (1-4), 69—80 (2006).
https://doi.org/10.1007/s11214-006-5669-9
18. Lysak R., Song Y. Propagation of kinetic Alfvén waves at the plasma sheet boundary layer.  American Physical Society, 52nd Annual Meeting of the APS Division of Plasma Physics, November 8—12, 2010, abstract #TO8.004.
19. Parks G. K., Chen L. J., Fillingim M., McCarthy M. Kinetic characterization of plasma sheet dynamics.  Space Sci. Rev., 95 (1-2), 237—255 (2001).
https://doi.org/10.1023/A:1005206701965
20. Schriver D., Ashour-Abdalla M., Richard R. On the origin of the ion-electron temperature difference in the plasma sheet.  J. Geophys. Res., 103, 14879— 14895 (1998).
https://doi.org/10.1029/98JA00017
21. Takada T., Seki K., Hirahara M., et al. Statistical properties of low-frequency waves and ion beams in the plasma sheet boundary layer: Geotail observations.  J. Geophys. Res.,  110, P. A02204 (2005).
https://doi.org/10.1029/2004JA010395
22. Takada T., Seki K., Hirahara M., et al. Two types of PSBL ion beam observed by Geotail: Their relation to low frequency electromagnetic waves and cold ion energization. Adv. Space Res., 36 (10), 1883—1889 (2005).
https://doi.org/10.1016/j.asr.2003.09.075
23. Teste A., Parks G. K. Counterstreaming beams and flat-top electron distributions observed with Langmuir, whistler, and compressional Alfvén waves in Earth’s magnetic tail.  Phys. Rev. Lett., 102, P. 075003 (2009).
https://doi.org/10.1103/PhysRevLett.102.075003

24. Wygant J. R., Keiling A., Cattell C. A., et al. Evidence for kinetic Alfvén waves and parallel electron energization at 4−6 altitudes in the plasma sheet boundary layer.  J. Geophys. Res., 107, P. 1201 (2002).
https://doi.org/10.1029/2001JA900113