Satellite project «Aerosol-UA»:remote sensing of aerosols in the Earth’s atmosphere
Heading:
1Yatskiv, Ya.S, 2Mishchenko, MI, 1Rosenbush, VK, 3Shakhovskoy, DN, 1Sinyavsky, II, 4Milinevsky, GP, 1Kiselev, NN, 1Ivanov, Yu.S, 1Petukhov, VN, 5Danylevsky, VO, 6Bovchalyuk, AP 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2The NASA Goddard Institute for Space Studies, New York, USA 3Scientific-Research Institute «Crimean Astrophysical Observatory» of the Ministry for Education and Science of Ukraine, Nauchny, Crimea, Ukraine 4Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 5Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; (2) Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine 6Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Kosm. nauka tehnol. 2012, 18 ;(4):03–15 |
https://doi.org/10.15407/knit2012.04.003 |
Publication Language: Russian |
Abstract: It is well known that atmospheric aerosols strongly affect the terrestrial climate and environment, their climatic effects being comparable to those of the greenhouse gases. However accurate quantitative estimates of these effects and, especially, of their anthropogenic components are absent, thereby making it difficult to formulate scientifically justified social and economic programs. We outline the perspective Ukrainian space project «Aerosol-UA» which has the following three main objectives: 1) to monitor the spatial distribution of key parameters of terrestrial tropospheric and stratospheric aerosols; 2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; 3) to quantify the contribution of anthropogenic aerosols to climatic and ecological processes. We provide a detailed analysis and justification of an aerosol remote-sensing concept based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface. We argue that Ukraine possesses the requisite intellectual resources and production facilities to design, build, and launch into orbit a multi-functional high-precision polarimeter and thereby to make an essential contribution to the study of natural and man-made aerosols and their climatic and ecological effects.
|
Keywords: atmospheric aerosols, climate and ecology, polarization of sunlight, space project «Aerosol-UA» |
References:
1. Mishchenko M., Rozenbush V., Kiselev N. Polarization of light as the invisible but indispensable helper of investigators. Svitohlyad, N 2 (16), 56—61 (2009) [in Ukrainian].
2. Ackerman A. S., Toon O. B., Stevens D. E., et al. Reduction of tropical cloudiness by soot. Science, 288, 1042—1047 (2000).
https://doi.org/10.1126/science.288.5468.1042
https://doi.org/10.1126/science.288.5468.1042
3. Alexandrov M. D., Cairns B., Mishchenko M. I. Rainbow Fourier transform. J. Quant. Spectrosc. Radiat. Transfer, 113 (2012)
https://doi.org/10.1016/j.jqsrt.2012.03.025
https://doi.org/10.1016/j.jqsrt.2012.03.025
4. Allen R. J., Sherwood S. C., Norris J. R., Zender C. S. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350—354 (2012).
https://doi.org/10.1038/nature11097
https://doi.org/10.1038/nature11097
5. Baran A. J. From the single-scattering properties of ice crystals to climate prediction: a way forward. Atmos. Res., 112, 45—69 (2012).
https://doi.org/10.1016/j.atmosres.2012.04.010
https://doi.org/10.1016/j.atmosres.2012.04.010
6. Bauer S. E., Wright D. L., Koch D., et al. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models. Atmos. Chem. Phys., 8, 6003—6035 (2008).
https://doi.org/10.5194/acp-8-6003-2008
https://doi.org/10.5194/acp-8-6003-2008
7. Baum B. A., Yang P., Heymsfield A. J., et al. Improvements to shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteorol. Climatol., 50, 1037—1056 (2011).
https://doi.org/10.1175/2010JAMC2608.1
https://doi.org/10.1175/2010JAMC2608.1
8. Bréon F. M., Goloub P. Cloud droplet effective radius from spaceborne polarization measurements. Geophys. Res. Lett., 25, 1879—1882 (1998).
https://doi.org/10.1029/98GL01221
https://doi.org/10.1029/98GL01221
9. Cairns B., Mishchenko M., Ackerman A., et al. The need for aerosol and cloud measurements from space: Essential contributions from a rapid reflight of the Aerosol Polarimetry Sensor. (NASA Goddard Space Flight Center/Goddard Institute for Space Studies, 2012) http://glory.giss.nasa.gov.
10. Cairns B., Waquet F., Knobelspiesse K., et al. Polarimetric remote sensing of aerosols over land surfaces. In Satellite aerosol remote sensing over land, Eds A. A. Kokhanovsky, G. de Leeuw, 295—325 (Springer, Chichester, 2009).
https://doi.org/10.1007/978-3-540-69397-0_10
https://doi.org/10.1007/978-3-540-69397-0_10
11. Chin M., Kahn R. A., Schwartz S. E. (Eds). Atmospheric aerosol properties and climate impacts, 128 p. (U. S. Climate Change Science Program, Washington, 2009).
12. Chowdhary J., Cairns B., Travis L. D. Case studies of aerosol retrievals over the ocean from multiangle, multispectral photopolarimetric remote sensing data. J. Atmos. Sci., 59, 383—397 (2002).
https://doi.org/10.1175/1520-0469(2002)059<0383:CSOARO>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<0383:CSOARO>2.0.CO;2
13. Chowdhary J., Cairns B., Mishchenko M., Travis L. Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter. Geophys. Res. Lett., 28, 243—246 (2001).
https://doi.org/10.1029/2000GL011783
https://doi.org/10.1029/2000GL011783
14. Chowdhary J., Cairns B., Mishchenko M. I., et al. Retrieval of aerosol scattering and absorption properties from photopolarimetric observations over the ocean during the CLAMS experiment. J. Atmos. Sci., 62, 1093—1118 (2005).
https://doi.org/10.1175/JAS3389.1
https://doi.org/10.1175/JAS3389.1
15. Chowdhary J., Cairns B., Waquet F., et al. Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: analyses of RSP data acquired during the MILAGRO campaign. Remote Sens. Environ., 118, 284—308 (2012).
https://doi.org/10.1016/j.rse.2011.11.003
https://doi.org/10.1016/j.rse.2011.11.003
16. Danylevsky V., Ivchenko V., Milinevsky G., et al. Aerosol layer properties over Kyiv from AERONET/PHOTONS sunphotometer measurements during 2008—2009. Int. J. Remote Sens., 32, 657—669 (2011).
https://doi.org/10.1080/01431161.2010.517798
https://doi.org/10.1080/01431161.2010.517798
17. Danylevsky V., Ivchenko V., Milinevsky G., et al. Atmospheric aerosol properties measured with AERONET/ PHOTONS sun-photometer over Kyiv during 2008— 2009. Use of satellite and in-situ data to improve sustainability, Eds F. Kogan, A. Powell, O. Fedorov, 285—294 (Springer, Dordrecht, 2011).
18. Dubovik O., Herman M., Holdak A., et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech., 4, 975—1018 (2011).
https://doi.org/10.5194/amt-4-975-2011
https://doi.org/10.5194/amt-4-975-2011
19. Dubovik O., Holben B., Eck T. F., et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590—608 (2002).
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
20. Dubovik O., Sinyuk A., Lapyonok T., et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208 (34 p) (2006).
21. Fridlind A. M., Ackerman A. S. Estimating the sensitivity of radiative impacts of shallow, broken marine clouds to boundary layer aerosol size distribution parameter uncertainties for evaluation of satellite retrieval requirements. J. Atmos. Oceanic Technol., 28, 530—538 (2011).
https://doi.org/10.1175/2010JTECHA1520.1
https://doi.org/10.1175/2010JTECHA1520.1
22. Hansen J., Rossow W., Carlson B., et al. Low cost long term monitoring of global climate forcings and feedbacks. Climatic Change, 31, 247—271 (1995).
https://doi.org/10.1007/BF01095149
https://doi.org/10.1007/BF01095149
23. Hansen J., Ruedy R., Sato M., Lo K. Global surface temperature change. Rev. Geophys., 48, RG4004 (29 p.) (2010).
24. Hansen J., Sato M., Kharecha P., von Schuckmann K. Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13421—13449 (2011).
https://doi.org/10.5194/acp-11-13421-2011
https://doi.org/10.5194/acp-11-13421-2011
25. Hansen J., Sato M., Ruedy R. Radiative forcing and climate response. J. Geophys. Res., 102, 6831—6864 (1997).
https://doi.org/10.1029/96JD03436
https://doi.org/10.1029/96JD03436
26. Hasekamp O. P. Capability of multi-viewing-angle photopolarimetric measurements for the simultaneous retrieval of aerosol and cloud properties. Atmos. Meas. Tech., 3, 839—851 (2010).
https://doi.org/10.5194/amt-3-839-2010
https://doi.org/10.5194/amt-3-839-2010
27. Hasekamp O. P., Landgraf J. Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: retrieval approach, information content, and sensitivity study. J. Geophys. Res., 110, D20207 (2005).
https://doi.org/10.1029/2005JD006212
https://doi.org/10.1029/2005JD006212
28. Hasekamp O., Landgraf J. Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. Appl. Opt., 46, 3332—3344 (2007).
https://doi.org/10.1364/AO.46.003332
https://doi.org/10.1364/AO.46.003332
29. Hasekamp O., Litvinov P., Butz A. Aerosol properties over the ocean from PARASOL multi-angle photopolarimetric measurements. J. Geophys. Res., 116, D14204 (2011).
https://doi.org/10.1029/2010JD015469
https://doi.org/10.1029/2010JD015469
30. Holben B. N., Eck T. F., Slutsker I., et al. AERONET — a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1—16 (1998).
https://doi.org/10.1016/S0034-4257(98)00031-5
https://doi.org/10.1016/S0034-4257(98)00031-5
31. Kiehl J. T. Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett., 34, L22710 (2007).
https://doi.org/10.1029/2007GL031383
https://doi.org/10.1029/2007GL031383
32. Kiselev N. N., Mishchenko M. I. Astrophysical polarimetry in Ukraine. Polarimetric detection, characterization, and remote sensing, Eds M. I. Mishchenko, Ya. S. Yatskiv, V. K. Rosenbush, G. Videen, 233—260 (Springer, Dordrecht, 2011).
https://doi.org/10.1007/978-94-007-1636-0_9
https://doi.org/10.1007/978-94-007-1636-0_9
33. Knobelspiesse K., Cairns B., Ottaviani M., et al. Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar. Atmos. Chem. Phys., 11, 7045—7067 (2011).
https://doi.org/10.5194/acp-11-7045-2011
https://doi.org/10.5194/acp-11-7045-2011
34. Knobelspiesse K., Cairns B., Redemann J., et al. Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign. Atmos. Chem. Phys., 11, 6245—6263 (2011).
https://doi.org/10.5194/acp-11-6245-2011
https://doi.org/10.5194/acp-11-6245-2011
35. Koffi B., Schulz M., Bréon F.-M., et al. Application of the CALIOP Layer Product to evaluate the vertical distribution of aerosols estimated by global models: Part 1. AeroCom phase I results. J. Geophys. Res., 117, D10201 (26 p.) (2012).
36. Kondratyev K. Ya. Climatic effects of aerosols and clouds, 267 p. (Praxis, Chichester, 1999).
37. Lacis A., Hansen J., Sato M. Climate forcing by stratospheric aerosols. Geophys. Res. Lett., 19, 1607—1610 (1992).
https://doi.org/10.1029/92GL01620
https://doi.org/10.1029/92GL01620
38. Lacis A. A., Mishchenko M. I. Climate forcing, climate sensitivity, and climate response: a radiative modeling perspective on atmospheric aerosols. Aerosol forcing of climate, Eds R. Charlson, J. Heintzenberg, 11—42 (Wiley, New York, 1995).
39. Loeb N. G., Su W. Direct aerosol radiative forcing uncertainty based on a radiative perturbation analysis. J. Clim., 23, 5288—5293 (2010).
https://doi.org/10.1175/2010JCLI3543.1
https://doi.org/10.1175/2010JCLI3543.1
40. Lohmann U., Feichter J. Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5, 715—737 (2005).
https://doi.org/10.5194/acp-5-715-2005
https://doi.org/10.5194/acp-5-715-2005
41. Lohmann U., Ferrachat S. Impact of parametric uncertainties on the present-day climate and on the anthropogenic aerosol effect. Atmos. Chem. Phys., 10, 11373—11383 (2010).
https://doi.org/10.5194/acp-10-11373-2010
https://doi.org/10.5194/acp-10-11373-2010
42. Maring H., Savoie D. L., Izaguirre M. A., et al. Mineral dust aerosol size distribution change during atmospheric transport. J. Geophys. Res., 108, 8592 (6 p.) (2003).
43. Miller R. L., Cakmur R. V., Perlwitz J., et al. Mineral dust aerosols in the NASA Goddard Institute for Space Sciences Modele atmospheric general circulation model. J. Geophys. Res., 111, D06208 (19 p.) (2006).
44. Mishchenko M. I., Travis L. D. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res., 102, 16989—17013 (1997).
https://doi.org/10.1029/96JD02425
https://doi.org/10.1029/96JD02425
45. Mishchenko M. I., Hovenier J. W., Travis L. D. (Eds). Light scattering by nonspherical particles: theory, measurements, and applications, 690 p. (San Diego: Academic Press, 2000).
46. Mishchenko M. I., Travis L. D., Lacis A. A. Scattering, absorption, and emission of light by small particles, 445 p. (Cambridge: University Press, 2002).
47. Mishchenko M. I., Travis L. D., Lacis A. A. Multiple scattering of light by particles: radiative transfer and coherent backscattering, 478 p.
48. Mishchenko M. I., Travis L. D., Kahn R. A., West R. A. Modeling phase functions for dustlike tropospheric aerosols using a mixture of randomly oriented polydisperse spheroids. J. Geophys. Res., 102, 16831— 16847 (1997).
https://doi.org/10.1029/96JD02110
https://doi.org/10.1029/96JD02110
49. Mishchenko M. I., Videen G., Rosenbush V. K., Yatskiv Ya. S. (Eds). Polarimetric detection, characterization, and remote sensing, J. Quant. Spectrosc. Radiat. Transfer (Special Issue), 112 (13), 2041—2248 (2011).
https://doi.org/10.1016/j.jqsrt.2011.04.004
https://doi.org/10.1016/j.jqsrt.2011.04.004
50. Mishchenko M. I., Yatskiv Ya. S., Rosenbush V. K., Videen G. (Eds). Polarimetric detection, characterization, and remote sensing, 550 p. (Springer, Dordrecht, 2011).
https://doi.org/10.1007/978-94-007-1636-0
https://doi.org/10.1007/978-94-007-1636-0
51. Mishchenko M., Cairns B., Hansen J., et al. Monitoring of aerosol forcing of climate from space: analysis of measurement requirements. J. Quant. Spectrosc. Radiat. Transfer, 88, 149—161 (2004).
https://doi.org/10.1016/j.jqsrt.2004.03.030
https://doi.org/10.1016/j.jqsrt.2004.03.030
52. Mishchenko M. I., Cairns B., Kopp G., et al. Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission. Bull. Amer. Meteorol. Soc., 88, 677—691 (2007).
https://doi.org/10.1175/BAMS-88-5-677
https://doi.org/10.1175/BAMS-88-5-677
53. Mishchenko M. I., Geogdzhayev I. V., Cairns B., et al. Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. Appl. Opt., 38, 7325—7341 (1999).
https://doi.org/10.1364/AO.38.007325
https://doi.org/10.1364/AO.38.007325
54. Mishchenko M. I., Geogdzhayev I. V., Liu L., et al. Toward unified satellite climatology of aerosol properties: what do fully compatible MODIS and MISR aerosol pixels tell us? J. Quant. Spectrosc. Radiat. Transfer, 110, 402—408 (2009).
https://doi.org/10.1016/j.jqsrt.2009.01.007
https://doi.org/10.1016/j.jqsrt.2009.01.007
55. Mishchenko M. I., Geogdzhayev I. V., Rossow W. B., et al. Long-term satellite record reveals likely recent aerosol trend. Science, 315, 1543 (2007).
https://doi.org/10.1126/science.1136709
https://doi.org/10.1126/science.1136709
56. Mishchenko M. I., Liu L., Geogdzhayev I. V., et al. Aerosol retrievals from channel-1 and -2 AVHRR radiances: longterm trends updated and revisited. J. Quant. Spectrosc. Radiat. Transfer, 113 (2012)
https://doi.org/10.1016/j.jqsrt.2012.05.006
https://doi.org/10.1016/j.jqsrt.2012.05.006
57. Mishchenko M. I., Rosenbush V. K., Kiselev N. N., et al. Polarimetric remote sensing of Solar System objects, 292 p. (Kyiv: Akademperiodyka, 2010).
58. Nakićenović N., Swart R. (Eds). Emissions scenarios. Summary for policymakers. IPCC special report, 20 p. (Cambridge: University Press, 2000).
59. Penner J. E., Xu L., Wang M. Satellite methods underestimate indirect climate forcing by aerosols. Proc. Natl. Acad. Sci. USA, 108, 13404—13408 (2011).
https://doi.org/10.1073/pnas.1018526108
https://doi.org/10.1073/pnas.1018526108
60. Peralta R. J., Nardell C., Cairns B., et al. Aerosol Polarimetry Sensor for the Glory Mission. Proc. SPIE, 6786, 67865L (2007).
https://doi.org/10.1117/12.783307
https://doi.org/10.1117/12.783307
61. Persh S., Shaham Y. J., Benami O., et al. Ground performance measurements of the Glory Aerosol Polarimetry Sensor. Proc. SPIE, 7807, 780703 (2010).
https://doi.org/10.1117/12.862029
https://doi.org/10.1117/12.862029
62. Pham M., Boucher O., Hauglustaine D. Changes in atmospheric sulfur burdens and concentrations and resulting radiative forcings under IPCC SRES emission scenarios for 1990—2100. J. Geophys. Res. 110, D06112 (10 p.) (2005).
63. Ramanathan V., Crutzen P., Kiehl J., Rosenfeld D. Aerosols, climate, and the hydrological cycle. Science, 294, 2119—2124 (2001).
https://doi.org/10.1126/science.1064034
https://doi.org/10.1126/science.1064034
64. Randall D. A. (Ed). General circulation model development, 815 p. (Academic Press, San Diego, 2000).
65. Satoh M. Atmospheric circulation dynamics and general circulation models, 643 p. (Praxis, Chichester, 2004).
66. Schulz M., Textor C., Kinne S., et al. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, 5225—5246 (2006).
https://doi.org/10.5194/acp-6-5225-2006
https://doi.org/10.5194/acp-6-5225-2006
67. Schwartz S. E. Uncertainty requirements in radiative forcing of climate change // J. Air Waste Manage. Assoc., 54, 1351—1359 (2004).
https://doi.org/10.1080/10473289.2004.10471006
https://doi.org/10.1080/10473289.2004.10471006
68. Schwartz S. E., Slingo A. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols. Clouds, chemistry and climate, Eds P. J. Crutzen, V. Ramanathan, 191—236 (Springer, Berlin, 1996).
69. Schwartz S. E., Charlson R. J., Rhode H. Quantifying climate change — too rosy a picture? Nature Rep. Clim. Change, 1, 23—24 (2007).
https://doi.org/10.1038/climate.2007.22
https://doi.org/10.1038/climate.2007.22
70. Seinfeld J. H., Pandis S. N. Atmospheric chemistry and physics: from air pollution to climate change, 1203 p. (Wiley, New York, 2006).
71. Solomon S., Qin D., Manning M., et al. (Eds). Climate change 2007: the physical science basis, 996 p. (University Press, Cambridge, 2007).
72. Stephens G. L., Vane D. G., Boain R. J., et al. The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteorol. Soc., 83, 1771—1790 (2002).
https://doi.org/10.1175/BAMS-83-12-1771
https://doi.org/10.1175/BAMS-83-12-1771
73. Stier P. Towards the assessment of the aerosol radiative effects — a global modelling approach. PhD Thesis, 113 p. (2005).
74. Tanré D., Bréon F. M., Deuzé J. L., et al. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos. Meas. Tech., 4, 1383—1395 (2011).
https://doi.org/10.5194/amt-4-1383-2011
https://doi.org/10.5194/amt-4-1383-2011
75. Trenberth K. E. (Ed.) Climate system modeling, 820 p. (University Press, Cambridge, 2009).
76. Videen G., Yatskiv Ya., Mishchenko M. Photopolarimetry in remote sensing, 503 p. (Kluwer Academic Publishers, Dordrecht, 2004).
77. Waquet F., Cairns B., Knobelspiesse K., et al. Polarimetric remote sensing of aerosols over land. J. Geophys. Res., 114, D01206 (23 p.) (2009).
78. Waquet F., Riedi J., Labonnote L.-C., et al. Aerosol remote sensing over clouds using A-Train observations. J. Atmos. Sci., 66, 2468—2480 (2009).
https://doi.org/10.1175/2009JAS3026.1
https://doi.org/10.1175/2009JAS3026.1
79. Wild M. Enlightening global dimming and brightening. Bull. Amer. Meteorol. Soc., 93, 27—37 (2012).
https://doi.org/10.1175/BAMS-D-11-00074.1
https://doi.org/10.1175/BAMS-D-11-00074.1
80. Winker D. M., Pelon J., Coakley J. A. Jr., et al. The CALIPSO Mission: a global 3D view of aerosols and clouds. Bull. Amer. Meteorol. Soc., 91, 1211—1229 (2010).