Synergetic effect of atomic oxygen flow and vacuum ultraviolet flux on spacecraft polyimide films

1Shuvalov, VA, 1Tokmak, NA, 1Pismennyi, NI, 2Kochubey, GS
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(3):10–19
Section: Spacecrafts and Payloads
Publication Language: Russian
We determined threshold values for the annual fluence of atomic oxygen and the ratio of the density of a solar ultraviolet vacuum flux to the density of a supersonic flow of atomic oxygen. The values characterize the synergetic effect on mass losses for polyimide films which are spacecraft structural materials
Keywords: fluence of atomic oxygen, mass losses, polyimide films, vacuum ultraviolet
1. Akishin A.I., Guzhova S.K. Ionospheric plasma interaction with materials and equipment of space apparatus, Physics and Chemistry of Materials Treatment, N 3, 40—47 (1993) [in Russian].
2. Anan'eva O.A., Milinchuk V.K., Zagorskii D.L. Study of one-side aluminized polyimide films exposed on the Mir orbital space station, High Energy Chemistry, 41 (6), 445—451 (2007) [in Russian].
3. Verkhovtseva E. T., Yaremenko V. I., Telepnev V. D. Gas jet simulator of the solar VUV and USX radiation and the effect of its radiation on some materials, Kosm. nauka tehnol., 4 (2/3), 102—109 (1998) [in Russian].
4. Vojcenja V.S., Guzhova S.K., Titov V.I. Effects of low temperature plasma and electromagnetic radiation materials. 224 p. (Energoatomizdat, Moscow, 1991) [in Russian].
5. Polymeric materials for space technique. Requirements for  ultraviolet radiation stability tests: HOST R 25645.338-96 from 12th March 1996, 16 p. (Gosstandart Rossii, Moscow, 1996) [in Russian].
6. Gurevich A. V., Shvarcburg A. V. Nonlinear theory of propagation of radio waves in the ionosphere, 273 p. (Nauka, Moscow, 1973) [in Russian].
7. Korn V. Z., Shuvalov V. A. Probe diagnostics of particle flux, resorbable from the surface of a solid body of a rarefied plasma jet, Journal of Applied Mechanics and Technical Physics,  N 5, 144—150 (1993) [in Russian].
8. Kuvaldina E. V., Ljubimov V. K., Maksimov A. I. et al. The temperature dependence of the etching rates of polyimide film in the plasma, High Energy Chemistry, 24 (5), 471—477 (1990) [in Russian].
9. Kuvaldina E. V., Ljubimov V. K., Rybkin V. V. The rate constant and the probability of interaction of atomic oxygen with a polyimide film, High Energy Chemistry, 26 (5), 475—478 (1992) [in Russian].
10. Milinchuk V. K., Klinshpont Je. R., Sheluhov I. P. et al. Degradation of polymer materials on the orbital space station "Mir", Izvestia vuzov. Yadernaya Energetika, N 2, 108—118 (2002) [in Russian].
11. Nikiforov A. P., Ternovoj A. I., Samsonov P. V. et al. Problems of studying the mechanism of interaction of the vacuum ultraviolet radiation and hyperthermia atomic oxygen (5 eV) with polymeric materials for spacecraft, Him. fizika, 21 (5), 73—82 (2002) [in Russian].
12. Novikov L. S. Current status and prospect of research satellites interaction with the environment,  In  Model of cosmos, Ed. by M. I. Panasyuk, L. S. Novikov, Vol. 2, P. 10—38  (Vol. 1-2; Vol. 2) (KDU, Moscow, 2007) [in Russian].
13. New high technologies in engineering. Vol.17. The impact of the space environment on materials and equipment spacecraft, Ed. by K.S.Kasaev, 280 p. (ZAO NII JeNCITEH, Moscow, 2000) (Vols. 1-24; Vol. 17) [in Russian].
14. Pereverzev E.S. The models of damage accumulation in durability problems, 360 p. (Nauk.dumka, Kiev, 1995) [in Russian].
15. Reznichenko N. P., Shuvalov V. A. Transferring the energy of atomic ions from a supersonic flow of a partially dissociated gas to the surface of a solid, Journal of Applied Mechanics and Technical Physics, N 6, 11—19 (1989) [in Russian].
16. Site of S.I.Vavilov State Optical Institute. Retrieved from [in Russian].
17. Filippov B. V. Interaction gas ions with the surface, The aerodynamics of rarefied gases, N 3, 110—117 (1967) [in Russian].
18. Chernik V. N., Naumov S. F., Demidov S. A. et al. Issledovanija poliimidnyh plenok s zashhitnymi pokrytijami dlja kosmicheskih apparatov, Perspektivnye materialy, N 6, 14—20 (2000) [in Russian].
19. Shishackaja L. P., Jakovlev S. A., Volkova G. A. Discharge lamps vacuum UV region of the spectrum, Journal of Optical Technology,  N 7, 72—74 (1995) [in Russian].
20. Shuvalov V.A., Kochubei G.S., Priimak A.I., et al. Changes of properties of the materials of spacecraft solar arrays under the action of atomic oxygen, Cosmic Research, 45 (4), 314—324 (2007) [in Russian].
21. Allegri G., Corradi S., Marchetti M., et. al. On the Degradation on Polymeric Thin Films in LEO Space Environment, Proc. 9th Intern. Symp. on Materials in a Space Environment, Noordwijk, June 2003 (ESA SP-540), P. 255—264 (ESTEC, Noordwijk, 2003).
22. ECSS-E-10-04A. Space engineering: Space environment. [Standard]  from 21 January 2000, 219 p. (ESTEC, Noordwijk, 2000).
23. Grossman E., Gouzman I. Space environment effects on polymers in low Earth Orbit, Nucl. Instrum. and Meth. in Phys. Res.,   B. 208, P. 48—57 (2003).
24. Grossman E., Gouzman I., Lempert G., et. al. Assessment of atomic — Oxygen flux in low-Earth orbit ground simulation facilities,  J. Spacecraft and Rockets, 41 (3), 356—359 (2004).
25. Koontz S., Leger L., Albyn K., Cross J. Vacuum ultraviolet radiation / Atomic Oxygen Synergism in Materials Reactivity, J. Spacecraft and Rockets, 27 (3), 346—348 (1990).
26. Koontz S. L., Leger L. J., Rickman S. L., et. al. Oxygen interactions with material III — Mission and induced environments,  J. Spacecraft and Rockets, 32 (3), 475—495 (1995).
27. Krech R. H., Ganthir M. G., Caledonia G. E. High velocity atomic Oxygen / Surface Accommodation Studies,  J. Spacecraft and Rockets, 30 (4) 509— 514 (1993).
28. Paillous A. Spacecraft surface exposure to atomic oxygen in LEO,  Tecnol. Environment spatial, 353—375 (ESA, Toulous, 1987).
29. Pippin H. G. Final report of analysis of Boeing specimens from on the effects of space environment on materials experiment. Appendix B. VA 23681 — 2199, P. 10—109 (NASA Langley Research Center, Hampton, 2008).
30. Shimamura A., Miyazaki E. Investigation into synergistic effects of atomic Oxygen and vacuum ultraviolet,  J. Spacecraft and Rockets,   46 (2), 241—247 (2009).
31. Tagawa M. Atomic Oxygen-induced polymer degradation phenomena in simulated LEO. Space environments: How do polymers react in a complication space environment,  Acta Astronautica, N 62, 203—211 (2008).
32. Yokota K., Ikeda K., Tagawa M. A. Okamoto. Synergistic effect of vacuum ultraviolet on a atomic oxygen-induced erosion of fluorinated polymer,  Proc. 10-th International Symp. on Materials in a Space Environment. 8th International Conf. on Protection of Materials and Structures in a Space Environment, Collioure, 2006, Noordwijk, P. 127—132 (ESTEC, Noordwijk, 2006).
33. Yokota K., Seikyu S., Tagawa M., Ohmae N. A quantitative study in synergistic effects of atomic Oxygen and ultraviolet regarding polymer erosion in LEO space environment, Pzoc. 9th Intern. Symp. on Materials in a Space Environment, Noordwijk, June 2003 (ESA SP — 540), P. 265—272 (ESTEC, Noordwijk, 2003).

34. Zimcik D. G., Wertheimer M. R., Balmain K. B., et al. Plasma-deposited protective coating for spacecraft applications,  J. Spacecraft and Rockets, 28 (6), 652—657 (1991).