Hydrodynamic model of torsional oscillations of the Sun

1Loginov, AA, 1Cheremnykh, OK, 2Krivodubskij, VN, 1Salnikov, NN
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(1):74–81
https://doi.org/10.15407/knit2012.01.074
Section: Space Astronomy
Publication Language: Russian
Abstract: 
Hydrodynamic nature of solar torsional oscillations is justified on the basis of comparison of observational results with some results of our numerical simulations of global flows in the solar convection zone. These oscillations are shown to be a toroidal component of the global three-dimensional oscillatory flow which is equator asymmetric. Physical mechanism of torsional oscillations is the loss of stability of the solar differential rotation.
Keywords: Sun, torsional oscillations
References: 
1. Allen C.W. Astrophysical Quantities, 448 p. (Moscow, 1977) [in Russian].
2. Batchelor G. K. An Introduction to Fluid Dynamics, 760 p. (Moscow, 1973) [in Russian].
3. Vitinskij Yu. I. Cyclic recurrence and solar activity forecasts, 260 p. (Moscow, 1973) [in Russian].
4. Vitinskij Ju. I., Kopeckij M., Kuklin G. V. Statistics of spot forming activity of the Sun, 296 p. (Moscow, 1986) [in Russian].
5. Gledzer E. B., Dolzhanskij F. V., Obuhov A. M. Systems of hydrodynamic type and their use, 368 p. (Moscow, 1981) [in Russian].
6. Joseph D. D. Stability of fluid motions, 638 p. (Moscow, 1981) [in Russian].
7. Kochin N. E., Kibel' I. A., Roze N. V. Theoretical Hydro Mechanics, Pt. 1, 584 p. (Moscow, 1963) [in Russian].
8. Loginov A. A., Sal'nikov N. N., Cheremnykh O. K., et al. On hydrodynamical mechanism of generation of global poloidal flow of the Sun Kinematics Phys. Celestial Bodies, 27 (5), 3—11 (2011) [in Russian].
9. Loginov A. A., Salnikov N. N., Cheremnykh O. K., et al. Hydrodynamic model for generation of global poloidal flow of the Sun,  Kosm. nauka tehnol., 17 (1), 29—35 (2011) [in Russian].
https://doi.org/10.15407/knit2011.01.029
10. Priest E. R. Solar Magnetohydrodynamics, 592 p. (Moscow, 1985) [in Russian].
11. Rubashev B. M. Problems of solar activity, 364 p. (Moscow; Leningrad, 1964) [in Russian].
12. Antia H. H., Basu S.  ESA SP-259: SOHO 14: Helio- and asteroseismology: towards a golden future, P. 305—308 (2004).
13. Braun D. C., Birc A. C. Prospects for the detection of the deep solar meridional circulation, Astrophys. J. Lett., 689, L161—L165 (2008).
https://doi.org/10.1086/595884
14. Couette M. Etudes sur le frottement des liquides, Ann. Chem. Phis., 21, P. 433 (1890).
15. Howard R., LaBonte B. J. The Sun is observed to be a torsional oscillator with a period of 11 years,  Astrophys. J., 239, L33—L36 (1980).
16. Howe R., Christensen-Dalsgaard J., Hill F., et al. Dynamics variations at the base of the solar convection zone, Science, 287, 2456—2460 (2000).
https://doi.org/10.1126/science.287.5462.2456
17. Howe R., Christensen-Dalsgaard J., Hill F., et al. Deeply penetrating banded zonal flow in the solar convection zone, Astrophys. J., 533, L163—166 (2000).
https://doi.org/10.1086/312623
18. Howe R., Christensen-Dalsgaard J., Hill F., et al. Solar convection-zone dynamics, 1995—2004, Astrophys. J., 634, 1405—1415 (2005).
https://doi.org/10.1086/497107
19. Howe R., Christensen-Dalsgaard J., Hill F., et al. Temporal variations in solar rotation at the bottom of the convection zone: The current status,  Adv. Space Res., 40 (7), 915—918 (2007).
https://doi.org/10.1016/j.asr.2006.12.047
20. Howe R., Christensen-Dalsgaard J., Hill F., et al. A note on the torsional oscillation at solar minimum,  Astrophys. J. Lett., 702, L87—L89 (2009).
https://doi.org/10.1088/0004-637X/701/2/L87
21. Howe R., Komm R., Hill F., et al. Rotation-rate variations at tachocline: An update,  J. Phys: Conf. Ser., 271 (1), P. 012075 (2011).
https://doi.org/10.1088/1742-6596/271/1/012075
22. Komm R., Howe R., Hill F., et al. Solar-cycle variation of zonal and meridional flow, J. Phys: Conf. Ser., 271 (1), P. 012077 (2011).
https://doi.org/10.1088/1742-6596/271/1/012077
23. Kosovichev A.G. Probing solar and stellar interior dynamics and dynamo,  Adv. Space Res., 41, 830—837 (2008).
https://doi.org/10.1016/j.asr.2007.05.023
24. Kosovichev A. G., Schou J. Detection of zonal shear flows beneath the Sun’s surface from f-mode frequency splitting,  Astrophys. J., 482, P. L207 (1997).
https://doi.org/10.1086/310708
25. Maunder E. W. Note on the distribution of Sun-spots in heliographic latitude, 1874 to 1902,  Mon. Notic. Roy. Astron. Soc., 64, 747—761 (1904).
https://doi.org/10.1093/mnras/64.8.747
26. Maunder E. W. Distribution of sunspots in heliographic latitude, 1874—1913,  Mon. Notic. Roy. Astron. Soc., 74, 112—116 (1913).
https://doi.org/10.1093/mnras/74.2.112
27. Schove D. J. The Sunspot Cycle, 649 B.C. to A.D. 2000,  J. Geophys. Res. — 1955. — 60. — P. 127—146.
28. Thompson M. J., Christensen-Dalsgaard J., Miesch M. S., Toomre J. The internal rotation of the Sun,  Annu. Rev. Astron. and Astrophys.,  41, 599—643 (2003).
https://doi.org/10.1146/annurev.astro.41.011802.094848

29. Vorontsov S. V., Christensen-Dalsgaard J., Schou J., et al. Helioseismic measurement of solar torsional oscillations, Science, 296, P. 101—103 (2002).
https://doi.org/10.1126/science.1069190