Cosmic ray modulation at neutron monitor energies

1Mishra, RA, 2Mishra, RK
1Department of Physics, Govt. Model Science College (Autonomous), Jabalpur (M. P.) 482 001, India
2Computer and IT Section, Tropical Forest Research Institute, P. O. RFRC, Mandla Road, Jabalpur (M. P.) 482 021, India
Kosm. nauka tehnol. 2008, 14 ;(3):019-028
https://doi.org/10.15407/knit2008.03.019
Publication Language: English
Abstract: 
The present work deals with the study of the first three harmonics of cosmic ray intensity on geo-magnetically quiet days from 1981 to 1993 for the Deep River and Inuvik neutron monitoring stations having mid and low cutoff rigidity. The amplitude of the first harmonic remains high for Deep River having mid cutoff rigidity as compared to the Inuvik neutron monitor having low cutoff rigidity on quiet days. The diurnal amplitude significantly decreases and phase shifts towards an earlier time during solar activity minimum years at both Deep River and Inuvik. The amplitude of the second harmonic significantly enhanced during solar activity minimum as well as maximum at Deep River and remains low during solar activity maximum at Inuvik, whereas the phase shifts towards an earlier time during solar maximum for both the stations. The amplitude of the third harmonic significantly enhanced during solar activity minimum at Deep River and during solar activity minimum at Inuvik, whereas the phase does not show any significant characteristics and fluctuates quite frequently. The amplitude of semi/tri-diurnal anisotropy has a good positive correlation, while the others (i.e., amplitude and phase) have a very weak correlation with solar wind velocity on quiet days at the Deep River station during 1981 ‒1993.
             The solar wind velocity significantly remains in the range from 350 to 425 km/s, i.e., it is nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days depend only weakly on high-speed solar wind streams for the two neutron monitoring stations of mid and low cutoff rigidity threshold. The amplitude as well as direction of the second harmonic has a good anti-correlation with interplanetary magnetic field Bz  and the product Vx´Bz on quiet days at the Deep River station. The direction of the second and third harmonics has a good anti-correlation with interplanetary magnetic field Bz and the product Vx´Bz on quiet days at Inuvik station.
Keywords: amplitude, cosmic ray, harmonic, neutron monitor
References: 
1. Agrawal S. P., Ananth A. G., Bemalkhedkar M. M., Kargathra L. V., Rao U. R. High-energy cosmic ray intensity increase of non-solar origin and the unusual Forbush decrease of August 1972. J. Geophys. Res., 79, 2269—2280 (1974).
https://doi.org/10.1029/JA079i016p02269
2. Agrawal S. P., Pathak S. P., Mishra B. L. In: 18th Int. Cosmic Ray Conf., 3, 304—307 (1983).
3. Ahluwalia H. S. Is there a twenty-year wave in the diurnal anisotropy of cosmic rays. Geophys. Res. Lett., 15, 287—290 (1988).
https://doi.org/10.1029/GL015i004p00287
4. Ahluwalia H. S., Fikani M. M. In: 25th Int. Cosmic Ray Conf., 2, 125—128 (1997).
5. Ahluwalia H. S., Riker J. F. Secular changes in the upper cut-off rigidity of the solar diurnal anisotropy. Planet. Space Sci., 35, 39—43 (1987).
https://doi.org/10.1016/0032-0633(87)90142-5
6. Alania M. V., Iskra K., Modzelewska R., Siluszyk M. The Galactic Cosmic Ray Intensity and Anisotropy Variations for Different Ascending and Descending Epochs of Solar Activity. 29th Int. Cosmic Ray Conf., 2, 219—222 (2005).
7. Amenomori M., et al. Two-dimensional observations on TeV Cosmic-ray large scale anisotropy using the Tibet Air Shower Array. 29th Int. Cosmic Ray Conf., 2, 49—52 (2005).
8. Axford W. I. The modulation of galactic cosmic rays in the interplanetary medium. Planet. Space Sci., 13, 115 (1965).
https://doi.org/10.1016/0032-0633(65)90181-9
9. Axford W. I. Anisotropic diffusion of solar cosmic rays. Planet. Space Sci., 13, 1301 (1965).
https://doi.org/10.1016/0032-0633(65)90063-2
10. Ballif J. R., Jones D. E., Coleman P. J. Further evidence on the correlation between transverse fluctuations in the interplanetary magnetic field and Kp. J. Geophys. Res., 74, 2289—2301 (1969).
https://doi.org/10.1029/JA074i009p02289
11. Belov A. V., Guschina R. T., Yanke V. G. On Connection of Cosmic Ray Long Term Variations with Solar-Helios-pheric Parameters. 26th Int. Cosmic Ray Conf., 7, 175—178 (1999).
12. Bieber J. W., Evenson P. In: 25th Int. Cosmic Ray Conf., 2, 81—84 (1997).
13. Braun J. Engler, Horandel J. R., Milke J. Solar modulation of cosmic rays in the energy range from 10 to 20 GeV. 29th Int. Cosmic Ray Conf., 2, 135—138 (2005).
14. Burlaga L. F., Ness N. F. Magnetic field strength distributions and spectra in the heliosphere and their significance for cosmic ray modulation: Voyager 1, 1980—1994. J. Geophys. Res., 103, 29719—29732 (1998).
https://doi.org/10.1029/98JA02682
15. Bussoletti E. Eldo-Celes/Esro-Cers Scient. Techn. Rev., 5, 285 (1973).
16. Chapmen S., Bartels I. In: Geomagnetic II. (Univ. Press, Oxford, 1940).
17. Dorman L. I., Kaminer N. S., Kuj'micheva A. E., Mymrina N. V. Features of diurnal variations of cosmic rays in high-speed streams of the solar wind. Geomagn. and Aero, 24, 546—551 (1984).
18. El-Borie M. A., Sabbah I., Darwish A., Bishara A. In: 24th Int. Cosmic Ray Conf., 4, 603—606 (1995).
19. Forbush Schott E. Cosmic ray diurnal anisotropy 1937— 1972. J. Geophys. Res., 78, 7933—7941 (1979).
https://doi.org/10.1029/JA078i034p07933
20. Forman M. A., Gleeson L. J. Cosmic ray streaming and anisotropies. Astrophys. Space Sci., 32, 74—94 (1975).
https://doi.org/10.1007/BF00646218
21. Fujimoto K., Kojimatt K., Munakami K. Cosmic Ray Intensity Variations and Solar Wind Velocity. 18th Int. Cosmic Ray Conf., 3, 267—270 (1983).
22. Hashim A., Thambyahpillai H. Large amplitude wave trains in the cosmic ray intensity. Planet. Space Sci., 17, 1879—1889 (1969).
https://doi.org/10.1016/0032-0633(69)90162-7
23. Iucci N., Paris, M., Storini M., Villoresi G. The behavior of the cosmic-ray equatorial anisotropy inside fast solar-wind streams ejected by coronal holes. Nuovo cim., 6C, 145—148 (1983).
https://doi.org/10.1007/BF02507930
24. Iucci N., Parisi M., Storini M., Villoresi G. High-speed solar-wind streams and galactic cosmic-ray modulation. Nuovo cim., 2C, 421—438 (1979).
https://doi.org/10.1007/BF02558283
25. Jadhav D. K., Shrivastava M., Tiwari A. K., Shrivastava P. K. Study of semi-diurnal variation of cosmic rays during days of high amplitude wave trains. 18th Int. Cosmic Ray Conf., 3, 337—340 (1983).
26. Kaminer N. S., Kuzmicheva A. E., Mymrina N. V. Cosmic-ray anisotropy near the boundary of a high-speed solar-wind stream. Geomagn. and Aero, 21, 424—427 (1981).
27. Kane R. P. Diurnal anisotropy of cosmic ray intensity. J. Geophys. Res., 75, 4350—4353 (1970).
https://doi.org/10.1029/JA075i022p04350
28. Kane R. P. Relationship between interplanetary plasma parameters and geomagnetic Dst. J. Geophys. Res., 79, 64—72 (1974).
https://doi.org/10.1029/JA079i001p00064
29. Kondoh K., Hasebe N., Doke T., et al. Galactic Cosmic Ray and Recurrent Enhancement of Solar Wind Velocity. 26th Int. Cosmic Ray Conf., 7, 179—182 (1999).
30. Kozyarivsky V. A., Lidvansky V. A., Petkov V. B., Tulupova T. I. Mean Diurnal Variations of Cosmic Ray Intensity as Measured by the Baksan Surface and Underground Detectors. 29 Int. Cosmic Ray Conf., 2, 93—96 (2005).
31. Kumar S., Agarwal R., Mishra R., Dubey S. K. A new concept of analysis of solar daily variation in cosmic ray intensity. 27th Int. Cosmic Ray Conf., 3, 3966—3969 (2001).
32. Kumar S., Chauhan M. L., Dubey S. K. Effect of interplanetary turbulences causing high/low amplitude anisotropic wave trains in CR intensity. Sol. Phys., 176, 403—415 (1999).
https://doi.org/10.1023/A:1004930112421
33. Kumar S., Gulati U., Khare D., et al. Study of 22-year periodicity in cosmic ray diurnal anisotropy on quiet days. J. Pure and Appl. Phys., 5, 276—285 (1993).
34. Kumar S., Shrivastava S. K., Dubey S. K., et al. Effect of solar poloidal magnetic field reversal on diurnal anisotropy of cosmic ray intensity on quiet days. Ind. J. Radio and Space Phys., 27, 236—240 (1998).
35. Kumar S., Yadav R. S. In: 17th Int. Cosmic Ray Conf., 10, 242—245 (1981).
36. Lockwood J. A., Webber W. R. Observations of the dynamics of the cosmic ray modulation. J. Geophys. Res., 89, 17—25 (1984).
https://doi.org/10.1029/JA089iA01p00017
37. Mavromichalaki H. In: Astrophys. Space Sci., 80, 59 (1979).
38. McCraken K. G., Rao U. R. A survey of the diurnal anisotropy. 9th Int. Cosmic Ray Conf., 1, 213—216 (1965).
39. McCraken K. G., Rao U. R., Ness N. F. The inter-relationship of cosmic ray anisotropies and the interplanetary magnetic field. Astron. J., 73, 70 (1968).
40. Moraal H., Caballero-Lopez R. A., McCracken K. G., Humble J. E. An explanation for the unusual cosmic ray diurnal variation in 1954. 29th Int. Cosmic Ray Conf., 2, 105—108 (2005).
41. Munakata K., Mori S., Ryu J. Y., et al. High-speed solar wind stream and modulation of cosmic ray anisotropy. 20th Int. Cosmic Ray Conf., 4, 39—42 (1987).
42. Owens A. J., Kash M. M. In: J. Geophys. Res., 81, 3471 (1976).
https://doi.org/10.1029/JA081i019p03471
43. Parker E. N. Theory of streaming of cosmic rays and the diurnal variation. Planet. Space Sci., 12, 735 (1964).
https://doi.org/10.1016/0032-0633(64)90054-6
44. Pomerantz M. A., Agrawal S. P., Potnis V. R. In: J. Frank. Inst., 269, 235 (1960).
45. Rao U. R. Solar modulation of galactic cosmic radiation. Space Sci. Rev., 12, 719 (1972).
https://doi.org/10.1007/BF00173071
46. Rao U. R., Ananth A. G., Agrawal S. P. Characteristics of quiet as well as enhanced diurnal anisotropy of cosmic radiation. Planet. Space Sci., 20, 1799 (1972).
https://doi.org/10.1016/0032-0633(72)90114-6
47. Richardson I. G., Cane H. V., Wibberenz G. In: J. Geophys. Res., 104, 12549 (1999).
https://doi.org/10.1029/1999JA900130
48. Sabbah I. In: J. Geophys. Res., 101, 2485 (1996).
https://doi.org/10.1029/95JA00968
49. Sabbah I. Magnetic cycle dependence of the cosmic ray diurnal anisotropy. Sol. Phys., 188, 403— 417 (1999).
https://doi.org/10.1023/A:1005113317072
50. Sabbah I. The influence of transient solar-wind events on the cosmic-ray intensity modulation. Can. J. Phys., 78, 293—302 (2000).
https://doi.org/10.1139/p00-044
51. Sabbah I. The role of interplanetary magnetic field and solar wind in modulating both galactic cosmic rays and geomagnetic activity. Geophys. Res. Lett., 27 (13), 1823—1826 (2000).
https://doi.org/10.1029/2000GL003760
52. Sabbah I., Darwish A. A., Bishara A. A. Characteristics of two-way cosmic ray diurnal anisotropy. Sol. Phys., 181, 469-477 (1998).
https://doi.org/10.1023/A:1005041102231
53. Sheeley N. R., Swanson E. T., Wang T. M. In: J. Geophys. Res., 96, 861 (1991).
https://doi.org/10.1029/91JA01168
54. Sikripin G. V., Mamrukova V. P. In: Izvestia of Russian Acad. Sci., Ser. Phys., 57 (7), 51 (1993).
55. Tiwari A. K. In: 24th Int. Cosmic Ray Conf., 3, 948—951 (1995).
56. Tiwari A. K. Ph. D. thesis. (A.P.S. University, Rewa, India, 1994).

57. Venkatesan D., Badruddin B. Cosmic ray intensity variations in the 3-dimensional heliosphere. Space Sci. Rev., 52, 121 (1990).