Microgravity as the experimental basis for understanding of the peculiarities of plant morphogenesis in the gravitational field

1Demkiv, OT, 2Kordyum, EL, 1Khorkavtsiv, Ya.D, 3Tairbekov, MG
1Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, L’viv, Ukraine
2M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3SSC RF «Institute of Medical and Biological Problems» RAS, Moscow, Russia
Kosm. nauka tehnol. 2006, 12 ;(5-6):030-035
https://doi.org/10.15407/knit2006.05.030
Publication Language: Ukrainian
Abstract: 
Spiral growth of the gravisensitive protonema of Ceratodon purpureas moss is revealed in real microgravity during space flight. Caulonema differentiation with oblique cell partitions and deviation of an apical cell growth zone from the growth horizontal axis were shown to precede the stolon spiralization. The slope of subapical cell walls enables an apical cell to revolve on its long axis, overcome the substrate and gravity resistance, and become twisted. Investigations of C. purpureus, Burbula unguiculata and Physcomitrella patens protonema growth in the conditions of 1 g, real and simulated microgravity (clinorotation) in darkness and under different light intensity and nutrient medium composition show that protonema morphogenesis is above all regulated by endogenous signals, action of which is concealed by gravity or light on the Earth.
Keywords: clinorotation, microgravity, morphogenesis
References: 
1. Butenko R. G. Isolated tissue culture and physiology of plant morphogenesis, 272 p. (Nauka, Moscow, 1964) [in Russian].
2. Demkiv O. T., Kordyum E. L., Tayirbekov M. H., et al. Gravimorphogenesis of the protonema of leaf moss. Dop. NAN Ukrai'ny. Ser. Biol. No. 7, 163—166 (1998) [in Ukrainian].
3. Demkiv O. T., Fedyk Ia. D. Polarity of cell permeability and its control by phytochrome. Biofizika, 22 (5), 824—828 (1977) [in Russian].
4. Lazarenko A. S., Kovalenko A. P., Pashuk H. T. Some spiral structures are protonemias of deciduous mosses. Ukr. botan. zhurn., 18 (6), 89—98 (1961) [in Ukrainian].
5. Lakin G. F. Biometrics, 352 p. (Vyssh. shk., Moscow, 1990) [in Russian].
6. Sinnot E. Plant Morphogenesis, 603 p. (Izd-vo inostr. lit-ry, Moscow, 1963) [in Russian].
7. Bopp M. Versuche zur Analyse von Wachstum und Differenzierung des Laubmoosprotonemas. Planta, 53, 178—197 (1959). 
8. Bopp M. Developmental Physiology of Bryophytes. In: Schuster R. M. (Ed.) New Manual Biology, 276—324 (The Hattori Bot. Lab. Nichinan, 1983).
9. Demkiv O. T., Khorkavtsiv Ya. D., Pundiak O. I. Changes of protonemal cell growth related to cytoskeleton organization. Cell Biology International, 27 (3), 187—189 (2003).
10. Kern V. D., Sack F. D. Irradiance-dependent regulation od gravitropism by red light in protonemata of the moss Ceratodon purpureus. Planta, 209, 299— 307 (1999).
11. Kern V. D., Schwuchow J. M., Reed D. W., et al. Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta, 221, 149—157 (2005). 
12. Khorkavtsiv O. Ya., Kardash O. R. Gravity-dependent reactions of the moss Pohlia nutans. Adv. Space Res., 27 (5), 989—993 (2001). 
13. Kofler L. Croissance spiralee du protonema de Funaria hygrometrica (L.) Sibth, 245, 1823—1825 (C. R. Acad. Sci., Paris, 1957).
14. Kofler L. Contribution a l'eetude biologique de mousses cultivees in vitro: germination de spores, croissance et developpement du protonema chez Funaria hygrometrica. Revue Bryol. Lichen., 28 (1-2), 1—202 (1959).
15. Nick P. Signaling to the microtubular cytoskeleton un plants. Int. Rev. Cytol., 184, 140—144 (1998).
16. Moore B., Zhou L., Rolland F., et al. Role of the Arabidopsis glucose sensor HXKI in nutrient, light and hormonal signaling. Science, 300, 332— 336 (2003). 
17. Reski R. Development, genetics and molecular biology of mosses. Bot. Acta, 111, 1 — 15 (1998).
18. Thitamadee S., Tuchihara K., Hashimoto T. Microtubule basis for left-handed helical growth in Aradidopsis. Planta, 417, 193 (2002).