Model of the Moon 2004 for the «UkrSelene» project

1Shkuratov, Yu.G, 2Kislyuk, VS, 3Lytvynenko, LM, 2Yatskiv, Ya.S
1Institute of Astronomy of V. N. Karazin National University of Kharkiv, Kharkiv, Ukraine; Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Institute of Radio Astronomy of the National Academy of Science of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(Suppl. 2):03-51
https://doi.org/10.15407/knit2004.02s.003
Section: Space Astronomy
Publication Language: Russian
Abstract: 

 

Brief review of present state of Moon's investigations is given according to the following fields: celestial mechanics (orbital motion, tidal deceleration, rotation, and free libtation of the Moon), dynamics and figure (gravity and orientation of ellipsoid of inertia), geology (vertical structure of crust), chemistry and mineralogy (including content of natural radio-active elements), physics of surface (size and shape of particles, physical and mechanical, heat and physical as well as magnetic properties), optics (albedo, phase and spectral dependencies, polarizable characteristics, properties of reflection in millimeter range), interaction with surroundings (Moon's atmosphere, corpuscular emission, micrometeorite bombardment). Short history and prospective space investigations in particular by means of Ukrainian polar satellite of the Moon «Ukrselene» are considered as well. It is expected to make high-resolution imaging of permanently shadowed sites in the lunar polar regions with synthetic aperture imaging radar and polarimetric imaging of some regions with UV-spectropolarimeter.

Keywords: Moon's investigations, space planetology, Ukrselene
References: 
1. Abalakin V. K. Principles of Ephemeride Astronomy, 448 p. (Nauka, Moscow, 1979) [in Russian].
2. Afsar M. N., Button K. J. Millimeter Wave Dielectric Measurement of  Materials. Proceedings of the IEEE, 73 (1), 143—167 (1985) [In Russian].
https://doi.org/10.1109/PROC.1985.13114 
3. Bondarenko N. V., Shkuratov Yu. G. A Map of Regolith-Layer Thickness for the Visible Lunar Hemisphere from Radar and Optical Data. Astron. vestnik, 32 (4), 301—309 (1998) [in Russian].
4. Dolginov Sh. Sh. Planetary magnetism. Itogi Nauki i Tekhniki, Seriia Issledovanie Kosmicheskogo Prostranstva, 18, 132 p. (VINITI, Moscow, 1982) [In Russian].
5. Zharkov V. N. Geophysical Studies of Planets and Satellites, 102 p. (OIFZ RAN, Moscow, 2003) [In Russian].
6. Kisliuk V. S. Geometric and dynamic characteristics of the moon, 184 p. (Nauk. Dumka, Kiev, 1988) [in Russian].
7. Kislyuk V. S. Orientation of the lunar ellipsoid of inertia from Lunar Prospector measurements. Kinematika Fiz. Nebesn. Tel., 15 (3) 232—242 (1999) [in Russian].
8. Kislyuk V. S., Shkuratov Yu. G., and Yatskiv Ya. S. Exploration of the Moon from space: tasks, potentialities, and prospects of the Ukrainian science and engineering. Kosm. nauka tehnol., 2 (1-2), 3—16 (1996) [in Ukrainian].
https://doi.org/10.15407/knit1996.01.003 
9. Krupenio N. N. Radar studies of the moon, 172 p. (Nauka, Moscow, 1971) [In Russian].
10. Melosh H. J. Impact Cratering: A Geologic Process, 336 p. (Mir, Moscow, 1994) [In Russian].
11. Petrov D. V., Shkuratov Yu. G., Stankevich D. G., et al. The Area of Cold Traps on the Lunar Surface. Astron. vestnik, 37 (4), 285—291 (2003) [in Russian].
12. Petrova N. K. Tables of Physical Libration Based on the Schmidt's Theory of Lunar Motion (Main Problem). Trudy Kazanskoy Observ., No. 53, 48—80 (1993) [in Russian].
13. Pitjeva E. V. Modern numerical theory of movement of the Sun, the Moon and major planets  [Sovremennye chislennye teorii dvizhenija Solnca, Luny i bol'shih planet]. Soobshh. IPA RAN, No. 156, 34 p. (2003) [in Russian].
14. Surkov Yu. A. Gamma-spectrometry in cosmic investigations, 239 p. (Atomizdat, Moscow, 1977) [In Russian].
15. Florenskii K. P., Basilevskii A. T., Nikolaeva O.V. Lunar soil: properties and analogues  [Lunnyj grunt: svojstva i analogi]. (GEOHI AN SSSR, Moscow, 1975) [In Russian].
16. Frondel J. W. Lunar mineralogy, 334 p. (Mir, Moscow, 1978) [In Russian].
17. Shkuratov Yu. G., Bondarenko N. V., Kachanov A. S. Objectives for a lunar polar sracecraft after the «Clementine» mission.Kosm. nauka tehnol., 4 (1), 46–53 (1998) [In Russian].
https://doi.org/10.15407/knit1998.01.046 
18. Shkuratov Yu. G. Important Problems of the Moon Observations by a Ground-based Astronomical Means. Astron. vestnik, 34 (3), 216—232 (2000) [in Russian].
19. Shkuratov Yu. G., Omel'chenko V. V., Stankevich D. G., Kaidash V. G., Pieters P., Pinet P. Prognosis of lunar surface composition from laboratory studies of lunar samples and Clementine data. Kosm. nauka tehnol., 9 (1), 54—70 (2003) [In Russian].
20. Bums R.G. Mineralogical Application of Crystal Field Theory, 551 p. (Cambridge University Press, Cambridge, Ma, 1993).
21. Cameron A.G.W., Ward W.R. The origin of the Moon. Lunar Science VII. LPI Houston, 120—122 (1976).
22. Charette M.. McCord T., Pieters C., Adams J. Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J. Geophys. Res., 79, 1605—1613 (1974).
https://doi.org/10.1029/JB079i011p01605 
23. Dickey J.O., Bender P.L., Faller J.E. et al. Lunar laser ranging: a contributing legacy of the Apollo program. Science, 265 (5171), 482—490 (1994).
https://doi.org/10.1126/science.265.5171.482 
24. Dollfus A., Bowell E. Polarimetric properties of the lunar surface and interpretation. I. Telescope observation. Astron. Astrophys., 10, 29—53 (1971).
25. Eckhardt D.H. Theory of the libration of the Moon. Moon and Planets, 25 (1), 3—49 (1981).
https://doi.org/10.1007/BF00911807 
26. Feldman W. C., Barraclough B. L., Fuller K. R., et al. The Lunar Prospector gamma-ray and neutron spectrometers. Nuclear Instruments and Methods in Physics Research A, 422, P. 562 (1999).
https://doi.org/10.1016/S0168-9002(98)00934-6 
27. Heiken G.H., Vaniman D.T., French B.M. (Eds.). Lunar Sourcebook. A User's Guide to the Moon, 736 p. (Cambridge Univ. Press, Cambridge. 1991).
28. Gorenstein P. Alpha-particle spectrometry of the Moon. In: Remote geochemical analysis: elemental and mineral composition, Ed.by C. Pieters, P. Englert, 235—243 (Cambridge Univ. Press, Cambridge, 1993).
29. Kaydash V., Shkuratov Yu., Stankevich D., et al. Maps characterizing the lunar regolith maturity. 35th Lunar Planet. Sci. Conf. LPI Houston TX USA, Abstract # 1508 (2004).
30. Konopliv A.S., Binder A.B., Hood L.L., et al. Improved gravity field of the Moon from Lunar Prospector. Science, 281 (5382), 1476—1480 (1998).
https://doi.org/10.1126/science.281.5382.1476 
31. Konopliv A.S., Asmar S.W., Carranza E., et al. Recent gravity models as a result of the Lunar Prospector mission. Icarus, 150 (1), l—18 (2001).
https://doi.org/10.1006/icar.2000.6573 
32. Krasinsky G.A., Saramonova E.Y., Sveshnikov M.L., Sveslmikova E.S. Universal time, lunar tidal deceleration and relativistic effects from observations of transits, eclipses and occultations in Uie XVIII-XX centuries. Astron. and Astrophys., 145 (1), 90—96 (1985).
33. Lcmoine F.G.R., Smith D.E., Zuber M.T. A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data. J. Geophys. Res., 102 (E7), 16339—16359 (1997).
https://doi.org/10.1029/97JE01418 
34. Migus A. Analytical lunar librational tables. Moon and Planets, 23 (4), 391—427 (1980).
https://doi.org/10.1007/BF00897587 
35. Moons M. Analytical theory of libration of the Moon. Moon and Planets, 27 (3), 257—284 (1982).
https://doi.org/10.1007/BF00929297 
36. Nozette S., Rustan P., Pleasance L.P., et al. The Clementine mission to the Moon: Scientific Overview. Science, 266 (5192), 1835—1839 (1994).
https://doi.org/10.1126/science.266.5192.1835 
37. Omelchenko V. V., Shkuratov Yu. G., Kaydash V.G., Pieters C. Maps of lunar pyroxenes. Abstr. of pap. 38th Inter, microsymp. on planetology, # MS 070 (Moscow, 27-29 October, 2003).
38. Reedy R.C., Arnold J.R., Trombka J.I. Expected gamma-ray emission spectra from the limar surface as a function of chemical composition. J. Geophys. Res., 78, P. 5847 (1973).
https://doi.org/10.1029/JB078i026p05847 
39. Rode O.D., Ivanov A.V., Nazarov M.A., et al. Atlas of photomicrophotographs of the surface structures of lunar regolith particles, 274 p. (Academia, Praha, 1979).
40. Shkuratov Yu.G., Opanasenko N.V. Polarimetric and photometric properties of the Moon: Telescope observation and laboratory simulation. Icarus, 99, 468—484 (1992).
https://doi.org/10.1016/0019-1035(92)90161-Y 
41. Shkuratov Yu. G., Lytvynenko L. M., Shulga V. M. et al. Objectives of a prospective Ukrainian orbiter mission to the moon. Adv. Space Res., 31 (11), 2341—2345 (2003).
https://doi.org/10.1016/S0273-1177(03)00534-9 
42. Shkuratov Yu., Pinet P., Omelchenko V., et al. Derivation of elemental abundance maps at 15-km spatial resolution from the merging of Clementine optical and Lunar Prospector geochemical data. 35th Lunar Planet. Sci. Conf. LPI Houston TX USA, Abstract # 1162 (2004).
43. Shkuratov Yu., Videen G., Kreslavsky M.A., et al. Scattering properties of planetary regoliths near opposition. Photopolarimetry in Remote Sensing, Eds. G. Videen, Ya. Yatskiv, and M. Mishchenko, NATO Science Series, 191—208 (Kluwer Academic Publishers, London, 2004).
44. Smith D.E., Zuber M.T., Neumann G.A., Lemoine F.G. Topography of the Moon from the Clementine lidar. J. Geophys. Res., 102 (E1), 1591—1611 (1997).
https://doi.org/10.1029/96JE02940 
45. Starukhina L. V., Shkuratov Yu. G. Swirls on the Moon and Mercury: meteoroid swarm encounters as a formation mechanism. Icarus, 167 (1), 136—147 (2004).
https://doi.org/10.1016/j.icarus.2003.08.022 
46. Williams J.G., Newhall X.X., Dickey J.O. Lunar moments tides orientation and coordinate frames. Planet Space Sci., 44 (10), 1077—1080 (1996).
https://doi.org/10.1016/0032-0633(95)00154-9 
47. Zuber M.T., Smith D.E., Lemoine F.G., Neumann G.A. The shape and internal structure of the Moon from the Clementine mission. Science, 266 (5192), 1839—1843 (1994).