The simulation of noon electron density values of the F2 ionospheric peak with the use of kharkiv incoherent scatter radar data

1Dzyubanov, DA, 2Zakharov, IG, 1Lyashenko, MV
1Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry for Education and Sciences of Ukraine, Kharkiv, Ukraine
2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(2-3):028-035
Section: Space and Atmospheric Physics
Publication Language: Russian
The simulation of noon electron density values of the F2 ionospheric peak are performed on the basis of Kharkiv incoherent scatter radar data. It is shown that the third order polynomial is required for adequate description of dependency daytime values of electron density of the ionospheric peak F-region(Nm). Much attention is given to the estimation of the reliability of results of calculations. Coefficients of the regression for all seasons are calculated. The features of the seasonal variations of Nmin the solar cycle different phases are determined. It is shown that tidal and planetary waves can be the main reason of the variations.
Keywords: electron density, radar, solar cycle different phases
1. Alimov Yu. I. Alternative to the Method of Mathematical Statistics, 64 p. (Novoe v zhizni, nauke, tekhnike. Ser. Matematika, Kibernetika, No. 3.) (Znanie, Moscow, 1980) [in Russian].
2. Afanasiev N. T., Mezhetov M. A., Bazarzhapov A. D. Adaptive regional model of total electron content. In: Proceedings of the VI Session of Young Scientists, Wave Processes in the Problem Space Weather, BAYSIS-2003, 82—84 (Izd-vo ISZF SO RAN, Irkutsk, 2003) [in Russian].
3. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1988) [in Russian].
4. Earth’s ionosphere. Model of global distribution of concentration, temperature and effective collision frequency of electrons: HOST 25645.146-89, 656 p. (Vol. 1-3) (Goskom SSSR po standartam, Moscow, 1990) [in Russian].
5. Grigorenko Ye. I., Dzyubanov D. A., Lysenko V. N., et al. Severe magnetic, ionospheric and atmospheric storms in September 1998: the comparison of measurement and modeling results. Kosm. nauka tehnol., 9 (4), 49—66 (2003) [in Russian].
6. Dreiper N., Smit G. Applied Regression Analysis, 392 p. (Statistika, Moscow, 1973) [in Russian].
7. Zakharov I. G., Lyashenko M. V. Comparison of Experimental and Model Values of Total Electron Content in Ionosphere over Eastern Europe. Radio Physics and Radio Astronomy, 8 (3), 280—286 (2003) [in Russian].
8. Zakharov I. G., Tyrnov O. F. Influence of solar activity phases on seasonal variations of the electron density of the ionospheric F2 region.      Geomagnetizm i Aeronomiia, 26 (5), 847—849 (1986) [in Russian].
9. Zakharov I. G., Tyrnov O. F. Possibility of improving the accuracy of models of the spatial-temporal distribution of ionospheric electron density. Geomagnetizm i Aeronomiia, 25 (2), 323—324 (1985) [In Russian].
10. Ivanov-Kholodny G. S.,  Mikhailov A.V. Prediction of the State of the Ionosphere, 190 p. (Gidrometeoizdat, Leningrad, 1980) [In Russian].
11. Kapustina N. I., Oshe A. I., Sharapov I. P., et al. The subtlety of system analysis and paradox of the average. In: The system approach to geology, 34—39 (Moscow, 1989) [in Russian].
12. Koen M. A. Ionosphere Modelling for Applied Problems in Geophysics, 280 p. (Irkutsk University Press, Irkutsk, 1983) [in Russian].
13. Konovalenko Z. P., Agarkov S. G. The use of indicators in the study of the nature of the coherence of long-term flow fluctuations [Primenenie pokazatelja kogerentnosti pri issledovanii prirody mnogoletnih kolebanij stoka]. Tr. SARNIGMI, Is. 1(82), 167—181 (1972) [in Russian].
14. Kochenova N. A., Gonzalez J. S., Lazo B., et al. Model representations of diurnal variations of the summer F2-layer above Cuba. Geomagnetizm i Aeronomiia, 30 (4), 620—623  (1990) [in Russian].
15. Krasinets M. V., Nusinov A. A. Dependence of F10.7 on solar-activity indices. Geomagnetizm i Aeronomiia, 31 (4), 741—742 (1991) [In Russian].
16. Taran V. I. Ionosphere research by incoherent scatter radars in Kharkiv. Bulletin of the Kharkiv State Polytechnic University, Is. 31, 3—9 (1999) [In Russian].
17. Chernyshev O. V., Vasil’eva T. N. Forecasting the maximum useful frequencies), 289 p. (Nauka, Moscow, 1973) [In Russian].
18. Fayyad U. M., Piatetsky-Shapiro G.,    Smyth P., Uthurusamy R. (Eds) Advances in Knowledge Discovery and Data Mining. (The MIT Press, Cambridge, MA, 1996).
19. Bilitza D. International Reference Ionosphere 2000. Radio Sci., 36 (2), 261—275 (2001).
20. Champion K. S. W. Recent advances in upper atmospheric structure. Adv. Space Res., 5 (7), 169—178 (1985).
21. Ching B. K., Chiu V. T. A Phenomenological Model of Global Ionosphere Electron Density in the E-, Fl- and F2-Regions. J. Atmos. and Terr. Phys., 35 (9), 1615—1630 (1973).
22. Hooke W. H. Rossby-planetary waves, and gravity waves in the upper atmosphere. Upper Atmosphere and Magnetosphere, Studies in Geophysics, P. 130 (National Academy of Sciences, Washington, 1977).
23. Kailiang D., Jinming M. Comparison of total electron content calculated using the IRI with observations in China. J. Atmos. and Solar-Terr. Phys., 3, 417—422 (1994).
24. Miyaki K., Hayakawa M., Molchanov O. A. The role of gravity waves in the lithosphere-ionosphere coupling, as revealed from the subionospheric LF propagation data. Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Eds M. Hayakawa, O. A. Molchanov, 229—232 (TERRAPUB, Tokio, 2002).
25. Rishbeth H., Sedgemore-Schulthess K. J. F., Ulich T. Semiannual and annual variations in the height of the ionospheric F2-peak. Ann. Geophys., 18, 285—299 (2000).
26. Sethia G. C., Bayley G. J., Moffett R. J., Hargreaves J. K. A modeling of the effects of neutral air winds on electron content at mid-latitudes in winter. Planet. Space Sci., 32 (5), 535—542 (1984).
27. Soicher H., Klobuchar J. A., Goodman J. M. Ionospheric effects on radio systems. Radio Sci., 20 (3), P. 259 (1985).

28. Zakharov I. G., Tyrnov O. F. A model of the total columnar electron content in the ionosphere for the latitudes 25 to 70° N. Telecommunications and Radio Engineering, 53 (4-5), P. 38—44 (1999).