Effect of the intermittent hypoxia on the bone tissue state after microgravitation modeling

1Berezovskii, VA, 1Litovka, IG, 1Chaka, HG, 2Magomedov, S, 2Mehed, NV
1Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2State Institution « Institute of traumatology and orthopedics Academy of Medical Sciences of Ukraine», Kiev, Ukraine
Kosm. nauka tehnol. 2000, 6 ;(2):77–84
https://doi.org/10.15407/knit2000.02.077
Section: Space Life Sciences
Publication Language: Russian
Abstract: 
We studied the influence of low Po2 under normal atmospheric pressure on the Ca and P metabolism, bone remodeling markers, and biomechanical properties of the femura bone in rats with their hind limbs unloaded. A hypoxic gas mixture (HGM) was given in intermittent regime A and В for 8 hours/day during 28 days. It was shown that regime A slows down the development of osteopenia and may be used in complex with other rehabilitation procedures for preventing the unloading osteopenia.
Keywords: biomechanical properties, hypoxia, metabolism
References: 
1. Berezovsky V. A. Oxygen tension in animal and human tissues, 276 p. (Naukova Dumka, Kiev, 1975) [in Russian].
2. Berezovskij V. A., Levashov M. I. Fiziologicheskie predposylki i mehanizmy normalizujushhego dejstvija normobaricheskoj gipoksii i oroterapii. Fiziol. Zh., 38 (5), 3—12 (1992) [in Russian].
3. Berezovskij V. A., Levashov M. I. Vvedenie v oroterapiju, 76 p. (Izd-vo Akademii problem gipoksii RF, 2000) [in Russian].
4. Berezovsky V. A., Litovka I. G., Chaka E. G. Reakcija spoluchnoi' tkanyny na aksial'ne rozvantazhennja kistok stegna. Fiziol. Zh., 44 (3), P. 284 (1998) [in Ukrainian].
5. Berezovsky V. A., Litovka I. G., Chaka E. G., et al. Biophysical stimulation of  osteogenesis. Problems of Osteology, 2 (2), 12—15 (1999) [in Russian].
6. Volozhin A. I. Mechanisms of osteodystrophy in weightlessness. Patol. Fiziol. Eksp. Ter., No. 1, 19—27 (1984) [in Russian].
7. Volozhin A. I., Lemetskaya T. I. Izmenenie kal'cievogo i fosfornogo obmena v kostjah i zubah pri kislorodnom golodanii. Patol. fiziologija i jeksperim. med., 14 (5), 16—20 (1970) [in Russian].
8. Gazenko O. G., Miasnikov V. I., Berezina G. A. Problems of optimizing the habitat environment. Probl. Kosm. Biol., 34, 9—38 (1977) [in Russian].
9. Grigoriev A. I., Volozhin A. I., Stupakov G. P. Mineral Metabolism in Human under Changed Gravity Conditions. In: Problems of Space Biology, 74, 214 (Moscow, 1994) [in Russian].
10. Grigoriev A. I., Larina I. M. Principy organizacii obmena kal'cija. Uspehi fiziol. nauk, 23 (3), 24—52 (1992) [in Russian].
11. Didenko I. E., Volozhin A. I. Chemical composition of the mineral component of rabbit bones after 30 days of hypokinesia. Kosm. Biol. Aviakosm. Med., 15 (1), 84—87 (1981) [in Russian].
12. Dobelis M. A. Vlijanie nevesomosti i nekotoryh ee modelej na mehanicheskie svojstva zhivotnyh pri skruchivanii Kosm. Biol. Aviakosm. Med., 19 (6), 40—45 (1985) [in Russian].
13. Klyatskin S. A., Lifshits P. I. Opredelenie glikozaminoglikanov ortsinovym metodom v krovi bol'nykh. Lab. delo, No. 9, 51—53 (1989) [in Russian].
14. Kovalev A. M. Osobennosti metabolizma kollagena i glikozaminoglikanov kostnoj tkani v uslovijah ogranichennoj dvigatel'noj aktivnosti i pri fizicheskih nagruzkah: Extended abstract of candidate’s thesis, 17 p. (Kiev, 1986) [in Russian].
15. Kolb V. G., Kamyshnikov V. S. Handbook of Clinical Chemistry, 311 p. (Minsk, 1982) [in Russian].
16. Krel' A. A., Furtseva L. P. Metody opredelenija oksiprolina v biologicheskih zhidkostjah i ih primenenie v medicinskoj praktike. Vopr. med. himii, 14 (6), 635—640 (1968) [in Russian].
17. Leontiev V. K., Petrovich Yu. A. Biochemical methods in clinical and experimental dentistry, 93 p. (Omsk, 1976) [in Russian].
18. Nikitin V. N., Persky E. E., Utevskaya L.A. The age and evolutionary biochemistry of collagen structures, 279 p. (Naukova dumka, Kiev, 1977) [in Russian].
19. Oganov V. S., Grigoriev A. I., Voronin L. I., et al. Bone mineral density in cosmonauts after flights lasting 4.5–6 months on the Mir orbital station. Aviakosm. Ekolog. Med., No. 5–6, 20—24 (1992) [in Russian].
20. Prokhonchukov A. A., Komissarova N. A., Zhizhina N. A., Volozhin A. I. Comparative study of the effect of weightlessness and artificial gravity on the density, ash, calcium, and phosphorus content of calcified tissues. Kosm. Biol. Aviakosm. Med., 14 (4), 23—25 (1980) [in Russian].
21. Prokhonchukov A. A., Zhizhina N. A., Tigranyan R. A. Homeostasis of bone tissue under normal and at extremal action. In: Problems in Space Biology, 49, 200 p. (Moscow, 1984) [in Russian].
22. Serov V. V., Schechter A. B. Connective tissue (functional morphology and general pathology), 312 p. (Meditsina, Moscow, 1981) [in Russian].
23. Stupakov G. P., Volozhin A. I. The Bone System and Weightlessness. In: Problems of Space Biology, 63, 185 p. (Moscow, 1989) [in Russian].
24. Tvorogova M. G., Titov V. N. Shhelochnaja fosfataza: metodicheskie priemy issledovanija i diagnosticheskoe znachenie (Obzor literatury). Lab. delo, No. 6, 10— 17 (1991) [in Russian].
25. Franke Yu., Runge G. Osteoporosis, Transl. from Germ., 304 p. (Meditsina, Moscow, 1995) [in Russian].
26. Shandala M. G., Rudnev M. I., Obukhan E. I. Health assessment of the biological effects of oxygen deficiency in the environment. Gig. Sanit., No. 9, 65—67 (1983) [in Russian].
27. Beresdorf J. N., Fedarko L. W., Midura R. J. Analysis of the proteoglycans synthesized by  human bone cells in vitro. J. Biol. Chem., 1716417172 (1987).
28. Heaney R. P. Calcium, bone health and osteoporosis. Bone Mineral Res. Ann., 4, 225—261 (1986).
29. Frey S. Etude dune methode 1'exploration et du taux normal de 1'hydroxproline due serum. Biochem. and Biophys. ets., 3 (2), 446—450 (1965).
30. Kubota M. Study on proliferation and function of periodontal ligament fibroblasts and osteoblastic cells under hypoxia. Kokubyo Gakkai Zasshi. 56 (4), 473—484 (1989).
https://doi.org/10.5357/koubyou.56.473
31. Lamb I. E. Hypoxia- an anti-deconditioning factor for manned space flight. Acrosp. Med., 36, 97—100 (1965).
32. Le Blank A. D., Scheider V. S., Evans H., et al. Bone montral loss and recovery after 17 weeks of bed rest. J. Bone and Mineral Res., 5 (8), 843—850 (1990).
https://doi.org/10.1002/jbmr.5650050807
33. Lueken S. A., Arnaud S. B., Taylor A. K., Baylink D. J. Changes in markers of bone formation and resorption in a bed rest model of weightlessness. J. Bone Mineral Res., 8 (12), 1433—1438 (1993).
https://doi.org/10.1002/jbmr.5650081204
34. Morey-Holton E. R., Arnaud S. B. Skeletal responces to spaceflight. Advances in space biology and medicine, Vol. 1, 37—69 (JAI press, N. Y., 1991).
35. Morey-Holton E. R., Wronski T. I. Animal models for simulating weightlessness. Physiologist, 24 (6), 45— 48 (1981).
36. Nishimyra Y., Fukuoka H., Kiriyama M., Suzuki Y. Bone turnover and calcium metabolism during 20 days bed rest in young healthy males and females. Acta physiol. Scand., 150, suppl., N 616, 27—35 (1994).
37. Rambaut P. C., Johnson P. S. Prolonged weightlessness and calcium loss in man. Acta astronaut., 6 (9), 1113—1122 (1979).
https://doi.org/10.1016/0094-5765(79)90059-6
38. Stegemann H. J. H. A simple procedure for the determination of  hydroxyproline in urine and bone. Biochem. Med., N 1, 23—30 (1952).
39. Tuncay O. C., Ho D., Barker M. K. Oxygen tension regulates osteoblast function. Am. J. Ortohod. Dentofacial Orthop., 105 (5), 457—463 (1994).
https://doi.org/10.1016/S0889-5406(94)70006-0
40. Valias A. C., Lernike R. F., Grindeland R. E. Effects of spaceflight on rat humerus geometry, biomechanics and biochemistry. FASEBJ, 4 (1), 47—54 (1990).
41. Wronski T. I., Morey-Holton E. R. Skeletal responce to stimulated weightlessness: a comparison of suspension techniques. Aviat. Space and Environ. med., 58 (1), 63—68 (1987).