Conception of gas and aerosol pollution monitoring of the earth's atmosphere (for altitudes more than 30 km) on board the International space station

1Morozhenko, OV, 1Shavrina, AV, 1Veles', OA
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2000, 6 ;(2):69–76
https://doi.org/10.15407/knit2000.02.069
Publication Language: Ukrainian
Abstract: 
Approximate model calculations support the idea, according to which the main role in the weakening of the ozone layer power is played by the aerosol pollution of the upper layers in the Earth's atmosphere and freons play a secondary role. For the tasks of exact modelling of the processes which create and destroy ozone and for monitoring of greenhouse gases and ecology of the atmosphere, a conception of experiments on board the Ukrainian module of the International Space Station was proposed. They will provide the possibility to receive information about global changes in the chemical composition of the atmosphere, spectral values of complex refractive index and sizes of the stratospheric aerosol, as well as about the vertical structure of gas and aerosol components of the atmosphere and the vertical temperature profile. Two device complexes are proposed to be mounted, one of them (two Fourier spectrometers for the spectral range 1.5−11 µm and a spectropolarimeter for 200—400 nm) will be targeted to nadir, and the second (two Fourier spectrometers for the spectral range 1.5−11µm) will observe the spectrum of solar radiation weakened by the Earth's atmosphere at various (with a step of 1−2 km) over the Earth's surface.
Keywords: aerosol pollution, monitoring of ecology of the atmosphere, ozone layer
References: 
1. Morozhenko O. V., Sosonkin M. G., Shavrina A. V., Ivanov Yu. S. Problems in the remote monitoring of global variations in the Earth atmosphere gas components. Kosm. nauka tehnol., 1 (2-6), 3—17 (1995) [in Ukrainian].
2. Ukrainian research module for international space station, 41 p. (1998) [in Ukrainian].
https://doi.org/10.15407/knit2000.04.001
3. Heath D. F., Thekaekara M. P. The solar spectrum  between 1200 and 3000 Å. In: The solar output and its variation, Ed.by O. R. White, 212—232 (Mir, Moscow, 1980) [in Russian].
4. Chamberlain J. W. Theory of planetary atmospheres: an introduction to their physics and chemistry, 352 p. (Mir, Moscow, 1981) [in Russian].
5. Yanovitskij Eh. G., Dumanskij Z. O. Tables of light scattering by a polydisperse system of spherical particles, 124 p. (Naukova dumka, Kiev, 1972) [in Russian].
6. Clerbaux C., Colin R., Simon P. C., Graner C. Infrared cross sections and global warming potentials of 10 alternative hydro-halocarbons. J. Geoph. Res., 98D (6), 10491 — 10497 (1993).
7. Farman J. C., Gardiner B. G., Shanklin J. D. Large losses of ozone in Antarctica reveal seasonal C1OX/NOX interaction. Nature, 315 (1), 207—210 (1985).
https://doi.org/10.1038/315207a0
8. Hansen J. Climat forsings and feedbacks. Long-Term Monitoring of Global Climate Forsings and Feedbacks, NASA Conf. Publ. 3234, 6—12 (New York, 1992).
9. Hansen J. Climsat Rationale. Long-Term Monitoring of Clobal Climate Forsings and Feedbacks, NASA Conf. Publ. 3234, 26—35 (New York, 1992).
10. Keating G. M. The responce of ozone to solar activity variations: A review. Solar Phys., 74 (2), P. 321 (1981).
https://doi.org/10.1007/BF00154521
11. Kucherov V. A., Ivanov Yu. S., Efimov Yu. S., et al. Ultraviolet low-resolution spectropolarimeter for the space mission SPECTRUM-UV (UVSPEPOL project). Kosm. nauka tehnol. Suppl., 3 (5-6),3—27 (1997).
https://doi.org/10.15407/knit1997.03s.003
12. Lacis A., Carlson B. Michelson Interferometer (MINT). Long-Term Monitoring of Global Climate Forsings and Feedbacks, NASA Conf. Publ. 3234, P. 47 (New York, 1992).
13. McCormic M. P. Stratospheric Aerosol and Gas Experiment (SAGE III). Long-Term Monitoring of Global Climate Forsings and Feedbacks, NASA Conf. Publ. 3234, 36—39 (New York, 1992).
14. Morozhenko A. V., Shavrina A. V. The concetration of gas and aerosol pollution monitoring (for altitudes more than 30 km) on board the Iternational Space Station. Sixteenth Colloquium on high resolution molecular spectroscopy. Dijon, 6-10 September 1999, Programm and Abstracts, Post-Deadline Posters, P. 8 (1999).
15. Orphal J., et al. Absorption cross-sections of O3 at atmospheric temperatures (203—293 K) and pressures (100—1000 mbar) in the 12500—40000 cm−1 spectral range measured using FTS. Chem. Phys. Lett. (2000). Retrieved from:  http://www-iup.physik.uni-bremen.de/gruppen/molspec.html).
16. Reinsel G. C., Tiao G. C., DeLuisi. J. J., et al. Analysis of upper stratospheric umkehr ozone profile data for trends and the effect of stratospheric aerosols. J. Geophys. Res., 89, 4833—4840 (1984).
17. Rothman L. S., Risland C. P., Goldman A., et al. The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition. J. Quant. Spectrosc. Radial. Transpher, 60 (5), 665—710 (1998).
18. Tiao G. C., Reinsel G. C., Pedrick J. H., et al. A statistical trend analysis of ozonezonde data. J. Geophys. Res., 91, 13121 — 13136 (1986).
19. Travis L. Earth observing scanning polarimeter. Long-Term Monitoring of Clobal Climate Forsings and Feedbacks, NASA Conf. Publ. 3234, 40—46 (New York, 1992).
20. Yoshino K., Esmond J. R., Cheung A. S.-C., et al. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2. Planet. and Space Sci., 40 (2-3), 185—192 (1992).
https://doi.org/10.1016/0032-0633(92)90056-T