Problems in the optimization of manned interplanetary expeditions

1Kiforenko, BN, 1Vasil'ev, IYu.
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2000, 6 ;(1):03-55
https://doi.org/10.15407/knit2000.01.003
Section: Space Life Sciences
Publication Language: Russian
Abstract: 
Within the scope of the unified variation problem we diskuss the optimization of parameters, choosing flight trajectories and optimal flight control as well as control of life support systems in spacecraft in manned interplanetary expeditions. We examine the efficiency of ejecting the life support systems waste by jets from high-thrust rocket engines as compared to partial waste regeneration. We confirm the possibility of manned expeditions to Mars before efficient life support systems based on biological regeneration are developed.
Keywords: life support systems, manned interplanetary expeditions, optimal flight control
References: 
1. Thermodynamic and thermal properties of products combustion, Vol. 2, 484 p. (Nauka, Moscow, 1972) (Vols. 1-5; Vol. 2) [in Russian].
2. Alemasov V. E., Dautov E. A., Dregalin A. F., Sergievskaia M. L. A Set of Applied Programs for Solving Nomographic Approximation Problems in Design Studies of Working Processes in Flight Vehicle Engines. Aviatsionnaia Tekhnika, No. 1, 8—12 (1988) [in Russian].
3. Alemasov V. E., Dregalin A. F., Tishin A. P. Theory of Rocket Engines, 533 p. (Mashinostroenie, Moscow, 1980) [in Russian].
4. Balashov V. V. Issledovanie optimal'nyh pereletov k Marsu s vozvrashheniem v atmosferu Zemli s zadannoj skorost'ju. TsAGI, Uchenye Zapiski, 2 (1), 82—91 (1971) [in Russian].
5. Balashov V. V. Nekotorye voprosy ispol'zovanija atmosfer planet dlja snizhenija jenergeticheskih zatrat pri osushhestvlenii mezhplanetnyh pereletov. Tr. 4 cht., posv. razrab. nauchn. nasledija K. Je. Ciolkovskogo, 40— 49 (Moscow, 1970) [in Russian].
6. Balashov V. V., Il'in V. A., Istomin N. A. Sintez optimal'nyh mnogoimpul'snyh mezhplanetnyh traektorij. Tr. 2 cht., posv. razrab. nauchn. nasledija F. A. Tsandera, 13—26 (Moscow, 1974) [in Russian].
7. Barrer M., Zhomott A., Vebek B. F., Vandenkerkkhove Zh. Rocket engines, 799 p. (Oborongiz, Moscow, 1962) [in Russian].
8. Beletskii V. V., Egorov V. A. Interplanetary Flights with Constant-Thrust  Engines. Kosmicheskie Issledovaniia, 2 (3), 360–391 (1964) [in Russian].
9. Beletskii V. V., Egorov V. A. Acceleration of spacecraft within a planetary sphere of influence. Kosmicheskie Issledovaniia, 2 (3), 392–407(1964) [in Russian].
10. Bolgarskii A. V. Raschet processov v kamere sgoranija zhidkostnyh raketnyh dvigatelej, 234 p. (Nauka, Moscow, 1964) [in Russian].
11. Verigo V. V. System methods in space biology and medicine, 213 p. (Nauka, Moscow, 1987) (Problem of Space Biology, Vol. 55) [in Russian].
12. Voronin G. I., Polivoda A. I. Life Support of Space Crafts Crew, 211 p. (Mashinostroenie, Moscow, 1967) [in Russian].
13. Gabasov R., Kirillova F. M. Singular optimal controls, 156 p. (Nauka, Moscow, 1973) [in Russian].
14. Glushko A. A. Space Life Support Systems: Biophysical principles of design and testing, 303 p. (Mashinostroenie, Moscow, 1986) [in Russian].
15. Grodzovskii G. L., Ivanov Yu. N., and Tokarev V. V. Mechanics of Space Flight.  Optimization Problems, 704 p. (Nauka, Moscow, 1975) [in Russian].
16. Grodzovskii G. L., Ivanov Yu. N., and Tokarev V. V. The  mechanics of low-thrust space flight. Inzh. zhurnal, 3 (3), (1963); ibid, 3 (4), (1963); ibid, 4 (1), (1964); ibid, 4 (2), (1964) [in Russian].
17. Grodzovskii G. L., Ivanov Yu. N., Tokarev V. V. On the Motion of a Body of Variable Mass with Constant Expenditure of Power in a Gravitational Field. Dokl. AN SSSR, 137 (1), (1961) [in Russian].
18. Davletshin G. Z. Gravity-assisted spacecraft maneuvers, 256 p. (Mashinostroenie, Moscow, 1980) [in Russian].
19. Demidova N. S., Malozemov V. V. Jelektrohimicheskie sistemy regeneracii kosmicheskogo korablja, 123 p. (Mashinostroenie, Moscow, 1992) [in Russian].
20. Zlatskii V. T. Constructing optimal trajectories with singular control arcs. Vych. Prikl. Matem., Is. 35, 27—34 (1978) [in Russian].
21. Ivanov V. A., Faldin N. V. The Theory of Optimal Automatic Control Systems, 336 p. (Nauka, Moscow, 1981) [in Russian].
22. Ivanov Yu. N. Optimal'noe sochetanie dvigatel'nyh sistem. Izv. AN SSSR. Mehanika i mashinostroenie, No. 2 (1964) [in Russian].
23. Il'in V. A. Optimal'nyj perehod kosmicheskogo apparata, tormozjashhegosja v atmosfere planety, na orbitu iskusstvennogo sputnika. Inzh. zhurnal, 3 (2), 163— 172 (1963) [in Russian].
24. Ilin V. A., Kuzmak G. E. Optimal transfer orbits of spacecraft with high-thrust engines, 744 p. (Nauka, Moscow, 1976) [in Russian].
25. Kirpichnikov S. N., Bobkova A. N. Optimal impulsive interorbital transfers with aerodynamic maneuvers. Kosmicheskie Issledovaniia, 30 (6), 800—809 (1992) [in Russian].
26. Kiforenko B. N., Kharitonov A. M. Thrust control of liquid-propellant engines: simulation and optimization. Probl. Upravl. Inform., No. 5, 118—130 (1997) [in Russian].
27. Kiforenko B. N. Optimization of the Parameters of a Body of Variable Mass for Motion with Active Jettisoning of Wastes from a Life-Support System. Kosmicheskie Issledovaniia, 13 (2), 201—205 (1975) [in Russian].
28. Kiforenko B. N. Optimum Execution Time for a Dynamic Maneuver of a Variable-Mass Point. Kosmicheskie Issledovaniia, 10 (5), 673—678 (1972) [in Russian].
29. Kiforenko B. N. Maneuver time optimization. Vych. Prikl. Matem., 63—70 (1972) [in Russian].
30. Kiforenko B. N., Dauletov G. K. Analytical study into optimal control of propellant composition. In: Proc. 9th Readings on Astronautics in Memory of S. P. Korolev, 100—109 (Moscow, 1987) [in Russian].
31. Kovalenko N. D. Supersonic Gas Flow Control in Jet Nozzles, 204 p. (Naukova Dumka, Kiev, 1992) [in Russian].
32. Kovalenko N. D., Strelnikov G. A., Gora Yu. V., Grebenyuk L. Z. Gas-dynamics of Supersonic Truncated Nozzles, 224 p. (Naukova Dumka, Kiev, 1993) [in Russian].
33. Korolev S. P. Rocket Flight in the Stratosphere. (Voenizdat, Moscow, 1934) [in Russian].
34. Labunskii A. V. Investigation of orbits with multiple flight from the Earth to Mars. Kosmicheskie Issledovaniia, 29 (3), 390—396 (1991) [in Russian].
35. Letov A. M. Flight Dynamics and Control, 359 p. (Nauka, Moscow, 1969) [in Russian].
36. Loitsianskii L. G. Fluid and gas mechanics, 307 p. (Nauka, Moscow, 1973) [in Russian].
37. Lawden D. F. Optimal Trajectories for Space Navigation, 152 p. (Mir, Moscow, 1966) [in Russian].
38. Moiseenko V. P. Ob optimizacii mnogostupenchatogo apparata. Trudy TsAGI, Is. 1295 (1971) [in Russian].
39. Novoselov V. S. Analytical Theory of Optimization in Gravitational Fields, 317 p. (Izd. LGU, Leningrad, 1972) [in Russian].
40. Novoselov V. S. Komplanarnyj perelet s uchetom vnutrennego zapasa massy. Vestnik LGU (1967) [in Russian].
41. Novoselov V. S. Optimal'noe postroenie jellipticheskoj orbity pri uslozhnennyh granichnyh uslovijah. Uch. zap. LGU, Is. 34, 1—5 (1967) [in Russian].
42. Obert G. The ways of spaceflights, Transl. from Germ.,  (Oborongiz, Moscow, 1948) [in Russian].
43. Okhotsimskii D. E., Sikharulidze Iu. G. Fundamentals of space flight mechanics, 445 p.  (Nauka, Moscow, 1990) [in Russian].
44. Parin V. V., Kosmolinskii F. P., Dushkov B. A. Space Biology and Medicine, 223 p. (Prosveshhenie, Moscow, 1975) [in Russian].
45. Perelygin B. P., Piskareva P. B. Optimizacija razgonnogo bloka po vesovomu zapravochnomu sootnosheniju i zakonu regulirovanija komponentov topliva. Tr. XI chtenij K. E. Tsiolkovskogo, 68—76 (Moscow, 1978) [in Russian].
46. Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R.V., Mishchenko E. F. Mathematical Theory of Optimal Processes, 384 p. (Nauka, Moscow, 1969) [in Russian].
47. Pulikvan M. F. Perspektivy razrabotok ZhRD NM60 na kriogennyh komponentah dlja zapadnoevropejskih raket-nositelej. Ajerokosmich. mehanika, 3 (7), 131 — 140 (1985) [in Russian].
48. Fatkin Yu. M. Ispol'zovanie inertnoj massy v dvigatele ogranichennoj skorosti istechenija. Mehanika tverdogo tela, No. 3, 164—168 (1967) [in Russian].
49. Hous S. D., Meuger D. O. Princip sozdanija reaktivnoj tjagi na osnove ispol'zovanija antiprotonov i perspektivy ee primenenija dlja pilotiruemoj jekspedicii na Mars. Ajerokosmich. tehn., No. 3, 57—64 (1990) [in Russian].
50. Tsander F. A. Problems of Flight by Means of Reactive Apparatus. Interplanetary Flights. (Oborongiz, Moscow, 1961) [in Russian].
51. Tsiolkovsky K. E. Collected works, Vol. 2, 455 p. (Izd-vo AN SSSR, Moscow, 1954) [in Russian].
52. Chernyi G. G. Gas Flow at High Supersonic Speed. (Fizmatgiz, Moscow, 1959) [in Russian].
53. Shibanov G. P., Vasil'ev M. A. Optimizacija struktury i rezhimov funkcionirovanija  regenerativnyh sistem OZh jekipazhej. VINITI, No. 4, 69—121 (1992) [in Russian].
54. Esnault-Pelterie R. Space flights (astronautics): Transl. from French. (Oborongiz, Moscow, 1950) [in Russian].
55. Barta D. J., Henninger D. L. Regeneration Life Support Systems — Why Do We Need Them? Adv. Space Res., 14 (11), 403—410 (1994).
https://doi.org/10.1016/0273-1177(94)90329-8
56. Bassam N. E., Max G., David K. Perspectives of Biological LSS Foundation. Proc. 4th Eur. Symp. Life Sci. Res. Space, 445—448 (Paris; Noordwijk, 1990).
57. Battin R. H. The Determination of Round-Trip Planetary Reconnaissance Trajectories. J. Aerospace Sci., 26, 545—567 (1959).
https://doi.org/10.2514/8.8204
58. Beers L. S., Cohen A. D. Mars Capabilites for Electrical, Nuclear and Chemical Propulsion Systems. IAS Paper, N 120 (1962).
59. Benton C., Clar K. Science, Engineering, and Enableng Technologies Requred to Support Mars Exploration. AIAA Pap., N 9482, P. 5 (1992).
60. Bilardo V. J. The Physical Chemical Closed-loop Life Support Research Project. AIAA Pap., N 3729, 1 — 14 (1990).
61. Binot R. A., Tamponnet C., Lausseur Ch. Biological Life Support for Manned Missions by ESA. Adv. Space Res., 14 (11), 71—74 (1994).
https://doi.org/10.1016/0273-1177(94)90281-X
62. Bowles J. V. Use of Atmospheric Braking During Mars Missions, J. Spacecraft and Rockets, N 5, 514—520 (1990).
63. Braun R. The Influence of Interplanetary Trajectory Options on a Chemically propelled MMM. J. Astronaut Sci., 38 (3), 289—310 (1990).
64. Braun R., Blersch D. I. Propulsive Options for a Manned Mars Transportation systems. J. Spacecraft and Rockets, N 1, 85—92 (1991).
https://doi.org/10.2514/3.26213
65. Breakwell J. V., Rauch H. E. Asymptotic Matching in Power-Limited Interplanetary Tranfers, 281—300 (Amer. Astronaut. Soc., Washington, 1967).
66. Brechignac Fraacois. Toward Bioregeneralive Life Support Systems. Proc. 4th Eur. Symp. Life Sci Res., 421—429 (Noordwijk, Paris, 1990).
67. Byrnes D. V., Hooper H. L. Multi-Conic: a Fast and Accurate Metod of Computing Space Flight Trajectories. AIAA Paper, N 1062, 1—8 (1970).
68. Couch U. T., Auman J. W., Falkey T. C. Advanced Regenerative Life Support for Space Exploration. SAE Techn. Pap. Ser., N 911500, 67—77 (1991).
69. Dailey C. L., Hieaff J. L., Lobreg R. U. Nuclear Propulsion for Mars Exploration-Electric Versus Thermal. AIAA Pap., N 3871, 1 — 11 (1992).
70. Doll J. R. Earth-Orbit Masses for Five-Impulse Mars Stopover Missions in 1980. J. Spacecraft and Rockets, 5 (5), 82—88 (1968).
https://doi.org/10.2514/3.29298
71. Doll J. R., Gobetz F. W. Three-Impulse Interplanetary Rendezvous Trajectories. Proc of Southeastern Symp. on Missiles and Aerospace Vehicle Sci. of AAS, 7, 55-1 — 55 -14 (1966).
72.  Eckenwiler M. Closed Form Lagrangian Multipliers for Coast Periods of Optimum Traectories // AIAA J.—1965.—3, N 6.— P. 1149—1151.
73. Edelbaum T. N. The Use of High- and Low-Thrust Propulsion in Combination for Space Missions. J. Astronaut. Sci., N 9, 58—59 (1962).
74. Emrich W. Nuclear State Configuration Studies for Mars Missons. AIAA Pap., N 3788, 1—7 (1990).
75. Emrich W., Young A. Nuclear Propulsion System Options for Mars Missions. AIAA Pap., N 1496, 1—6 (1992).
76. Gobets F. W., Doll J. R. A Survey of Impulsive Trajectories. AIAA J., 7 (5) 49—56 (1969).
77. Gobetz F. W., Doll J. R. How to Open the Heliocentric Launch Window for Earth—Mars Orbiter Missions. J. Spacecraft and Rockets, 6 (4), 353—360 (1969).
https://doi.org/10.2514/3.29662
78. Gravier J. P., Marchal C., Culp R. D. Optimal Impulsive Transfers Between Real Planetary Orbits. J. Optimiz. Theory and Appl., 15 (5), 557—604 (1975).
https://doi.org/10.1007/BF00933747
79. Gravier J. P., Marchal C., Culp R. D. Optimal Trajectories Between Earth and Mars in Their True Planetary Orbits. J. Optimiz. Theory and Appl., 9 (2), 120—136 (1972).
https://doi.org/10.1007/BF00932349
80. Hartwell J. G. A Solution of the Boundary Value Problem for Space Trajectories. Navigation, 12 (3), 256— 268 (1965).
https://doi.org/10.1002/j.2161-4296.1965.tb02141.x
81. Hazelrigg G. A., Lion P. M. Analytical Determination of the Adjoint Vector for Optimum Space Trajectories. AIAA Paper, N 916, 1 — 14 (1969).
82. Hohmann W. Die Erreichbarkeit der Himmelskoper. (Oldenbourg, Munchen, 1925).
83. Hollister W. M. Mars Transfer Via Venus. AIAA Pap., N 64, 647 (1964).
84. Horsewood J. L. Interplanetary Traectory Analysis for Combined High- and Low-Thrust Propulsion Systems. Proc. Space Flight Specialist Symp., Denver, Col., 1966, 457—576 (Amer. Astron. Soc., Washington, 1967).
85. Huttenbach R. C., Radford James D. H. Life Support — Future Trends and Developments. SAE Tech. Pap. Ser., N 891549, 1 — 16 (1989).
86. Irving J. H. Low Thrust Flight: Variable Exhaust Velocity in Gravitational Fields. Space Techn., N 10 (1959).
87. Jezewski D. J., Rozendaal H. L. An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories. AIAA J., 6 (11), 2160—2165 (1968).
https://doi.org/10.2514/3.4949
88. Lawden D. F. Optimal Intermediate-Thrust Rockets in a Gravitational Field. Astronautica Acta, 8, 106—123 (1962).
89. Lawden D. F. Necessary Conditions for Optimal Rocket Trajectories. J. Mech. and Appl. Math., 12 (4), 476—478 (1959).
https://doi.org/10.1093/qjmam/12.4.476
90. Lion P. M., Handelsman M. The Primer Vector on Fixed-Time Impulsive Trajectories. AIAA J., 16 (1), 127— 132 (1968).
91. MacElroy R. D., Wydeven T. Bio-regenerative Life Support. Proc. 34th AAS Int. Conf., 239—252 (San Diego, 1989).
92. Mackay J. S. Manned Mars Landing Missions Using Electric Propulsion. Spacecraft, 12 (1), 117—122 (1970).
93. McAdaws J. V., Niehoff J. C. Round Trip Trajectory Options for Human Exploration of Mars. Proc. AAS/NASA Int. Symp., 24—27 (1989).
94. McKay C. The Case for Human Exploration of Mars. AIAA Guid., New and Countr. Conf., Portland, Ougan, Collect., Techn. Pap., Pt. 1, 8 p. (Washington, 1990).
95. Melbourne V. G., Sauer C. G. Optimum Earth—Mars Roundtrip Trajectories Utilizing a Low-Thrust Power-Limited Propulsion System. Adv. in Astronaut. Sci., 13 (1963).
96. Novara M., Cullingford H. S. Bio-isolation Analisys of Plants and Humans in a Piloted Mars Sprint. SAE Techn. Pap. Ser., N 881051, 1 — 11 (1988).
97. Petraits J. J. Correction Factor for Initial Acceleration Effects on Impulsive Mission Requirements. ARS Journal, 32 (6) 957—959 (1962).
98. Powell F. T., Sedej M., Lin Chin. Environmental Control and Life Support System Requirements and Technology Needs for Manned Space Missions. SAE Techn. Pap. Ser., N 871433, 1 — 13 (1987).
99. Regsac R. V. Two-Vehicle Mars Stopover with Rendezvous. J. Spacecraft and Rockets, 3 (6), 572—586 (1966).
https://doi.org/10.2514/3.28540
100. Robbins H. M. Optimal rocket trajectories with subars of intermadiate thrust. Proc. XVIII Internal. Astron. Congr., 1966, 103—110 (Paris, 1967).
101. Rummel J. D. Long Term Life Support for Space Exploration. SAE Tech. Pap. Ser., N 901277, 67—73 (1990).
102. Seshan P. K., Ferrall J. F., Rohatgi N. K. Human Life Support During Interplanetary Travel and Domicile. SAE Techn. Pap. Ser., N 911323, 1 — 18 (1991).
103. Slavin T., Meyer P., Reysa R. Life Support System Definition Study for Long Duration Planetary Missions. SAS Techn. Pap. Ser., N 891505, 1 — 12 (1989).
104. Sohn R. L. Manned Mars Trips Using Flyby Modes. J. Spacecraft and Rockets, 3 (2) (1966).
https://doi.org/10.2514/3.28413
105. Sohn R. L. Venus Swingby Mode for Manned Mars Mission. J. Spacecraft and Rockets, 1 (5) (1964).
https://doi.org/10.2514/3.27702
106. Spuriack P., Spuriak J. M., Evanich P. L. Process Control Integration Requirements for Advanced Life Support Systems Appicable to Manned Space Missions. SAE Tech. Pap. Ser., N 911357, 1—9 (1991).
107. Stiepe S. A.,Braun R. Effect of Venus Swingby Periapsis Burn During an Earth—Mars Trajectory. J. Astrounaut Sci., 39 (3), 299—312 (1991).
108. Titus R. R. Powered Flybys of Mars. Astron. Acta, 11 (5), 294—308 (1965).
https://doi.org/10.2514/6.1965-515
109. Walberg G. D. How Shall We Go to Mars? A Review of Mission Scenarios. J. Spacecraft and Rockets, 30 (2), 129—139 (1993).
https://doi.org/10.2514/3.11521
110. Wang K. Estimate of Effect of Large Thrust on Hohmann-Type Transfers. ARS Journal, 32 (4), 642—645 (1962).
111. Werciwski P. F., Nishioka K. A Preliminary Analysis of Advanced LSS for MMM. AIAA Pap., N 3, 1 — 10 (1990).
112. Williams S. N., Longuski J. M. Low Energy Trajectories to Mars Via Gravity Assist from Venus to Earth. J. Spacecraft and Rockets, 28 (4), 486—488 (1991).

113. Zubrin R. Nuclear Thermal Rockets Using Indigenous Martian Propellants. AIAA Pap., N 31, Ref. N 2768 (1989).