Gravitropic response in protonemata of the moss Pohlianutans (Hedw.) Lindb. and its modulation by light

1Khorkavtsiv, OYa., 2Demkiv, ОТ
1Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, L’viv, Ukraine
2Institute of Ecology of the Carpathians of the National Academy of Sciences of Ukraine, Lviv, Ukraine
Kosm. nauka tehnol. 1999, 5 ;(5):110–117
https://doi.org/10.15407/knit1999.05.110
Section: Space Life Sciences
Publication Language: Ukrainian
Abstract: 
Comparative investigations of gravitropism were carried out in the protonemata of Pohlia nutans and well-studied moss Ceratodon pwpweus. In darkness the protonemata of both species showed the negative gravitropism. Under uniform illumination from above they grew radially over the substrate surface, whereas unilateral illumina­tion induced either positive or negative phototropic growth. In the P. nutans protonemata only positive phototropic curvature occured, at the same time the C. pwpweus protonemata were positively phototropic at low irradiation and negatively phototropic at high light. The protonemata of both moss species shows different growth reactions in monochromatic light. The phototropic curvatures in blue light were smoother than in red one, which induced a very sharp curvature, with a nearly 90° bending angle. It was found that the phototropic response depends on the alternation of red and blue illumination. A ten-minute illumination appeared more effective in the red-blue than in the blue-red sequence. The effect of red and blue light signals is probably caused by changes in the cytosolic Ca + concentration, as the most rapid response to the light exposure. Gravitropism in the protonemata grown by light was found depend on its quality, the gravitropic curvatures in the protonemata from the red light were weaker and they developed later than in the protonemata from the blue light.
Keywords: gravitropism, phototropic, space life
References: 
1. Demkiv O. T., Kardash A. R., Khorkavtsiv Ya. D. Cell polarity, its formation and reorientation. In Plant Growth and Resistance [Rost i ustoichivost’ rastenii], Ed. by R. K. Salyaev, V. I. Kefeli, 29—45 (Nauka, Novosibirsk, 1988) [in Russian].
2. Demkiv O. T., Sytnik K. M. Morphogenesis of Archegoniates, 203 p. (Naukova Dumka, Kiev, 1985) [in Russian].
3. Demkiv O., Khorkavtsiv Ya., Kardash O. Spil'nyj amerykans'ko-ukrai'ns'kyj eksperyment SPM na kosmichnomu korabli «Columbia». Ekologichnyj zbirnyk na poshanu Andrija Sozontovycha Lazarenka: Praci naukovogo tovarystva imeni Shevchenka, III, 13—18 (1999) [in Ukrainian].
4. Demkiv O. T., Khorkavtsiv Ya. D., Kardash O. R., Chaban Kh. I. Gravity sensitive moss protonema — a model object of the space biology. Kosm. nauka tehnol., 3 (3-4), 34–39 (1997) [in Ukrainian].
5. Demkiv O. T., Khorkavtsiv Ya. D., Kardash A. P., and Chaban Kh. I. Interactions between Light and Gravitation in Moss Protonema Tropisms.  Russian Journal of Plant Physiology, 44 (2), 205—211 (1997) [in Russian].
6. Jensen W. A.  Botanical histochemistry, 377 p. (Mir, Moscow, 1965) [in Russian].
7. Leopold A. Plant growth and development, Ed.by I. I. Gunar, 404 p. (Mir, Moscow, 1968) [in Russian].
8. Libbert E. Plant Physiology, Ed.by V. I. Kefeli, 580 p. (Mir, Moscow, 1976) [in Russian].
9. Medvedev S. S. Physiological Basics of Plant Polarity, 157 p. (Kol’na, St.Petersburg, 1996) [in Russian].
10. Plohinsky N. A. Biometrics, 367 p. (Izd-vo MGU, Moscow, 1970) [in Russian].
11. Khorkavtsiv Ya. D., Demkiv O. T. Reguljacija rostovyh procesiv v izol'ovanyh klitynnyh systemah mohiv. Fiziol. i biohim. kul't. rast., 25, N 3 (144), 284—289 (1993) [in Ukrainian].
12. Khorkavtsiv Ya. D., Kardash A. R., Demkiv O. T. Growth processes and cell interrelations in isolated cell systems of the moss Tetraphis pellucida Hedw. Fiziologiya Rastenii, 36 (1), 24—31 (1989) [in Russian].
13. Bopp M. Developmental Physiology of Bryophytes. In New Manual of Bryology, Ed. by R. Schuster, Vol. 1, 276—324 (1983).
14. Bopp M., Atzorn R. Hormonal regulation of moss development. Naturwissenschaften, 79 (8), 337—346 (1992).
15. Chaban Ch.L, Volker K. D, Ripetsky R. T, et al. Gravitropism in caulonemata of the moss Pottia intermedia. J. of Bryology, 20, 287—299 (1998).
16. Demkiv O. T, Kordyum E. L., Khorkavtsiv Ya. D., et al. Gravi- and photostimuli in moss protonema growth movements. Adv. Space Res., 21 (8-9), 1191 —1195 (1998).
17. Eppel D. The initiation of development at fertilization. Cell Differentiation and Development, 29 (1), 1 — 12 (1990).
18. Hartmann E. Influence of light on phototropic bending of moss protonemata of Ceratodon pwpweus (Hedw.) Brid. J. Hattori Bot. Lab., N 55, 87—98 (1984).
19. Hartmann E., Weber M. Storage of the phytochrome-mediated phototropic stimulus of moss protonemal tip cells. Planta, 175 (1), 39—49 (1988).
20. Hartmann E., Weber M. Photomodulation of protonema development. In Bryophyte  development:  physiology and biochemistry, Ed. R. N. Chopra, S. C. Bhatla, 33—54 (1990).
21. Hausser I., Herth W., Reiss H.-D. Calmodulin in tip-growing plant cells, visualized by fluorescing calmodulin-binding pheno-thiazines. Planta, 162 (1), 33—39 (1984).
22. Hock B. Phytochrome. Progress in Botany, 56, 201—235 (1995).
23. Jenkins G. I., Courtice R. M., Cove D. J. Gravitropic responses of wild-type and mutant strains of the moss Physcomitrella pattens. Plant, Cell and Environ., 9, 637—644 (1986).
24. Lobachevska O. V., Demkiv O. T., Ripetskyj R. T. Influence of gravity on spatial orientation and morphogenesis of moss sporophytes. Adv. Space Res., 21 (8-9), 1141 — 1144 (1998).
25. Nick P., Furuya M. Buder revisited: cell and organ polarity during phototropism. Plant, Cell and Environ., 19, 1179—1187 (1996).
26. Nick P., Schafer E. Polarity induction versus phototropism in maize: Auxin cannot replace blue light. Planta, 195, 61—69 (1994).
27. Pilet P. E., Greppin H., Bonzon M. Action de 1'acide gibberel-lique sur la densite des amyloplastes racinaires. C. r. Acad. Sci. Paris, 272 (13), 1760—1763 (1971).
28. Pilet P. E., Nougarede A. Action de 1'acide gibberellique sur la croissance et le geotropisme radiculaire. C. r. Acad. Sci. Paris, 272 (3), 418—422 (1971).
29. Ripetskyj R. T., Kit N. A., Chaban C. I. Gravity effects on the growth and development of moss secondary protonemata. Adv. Space Res., 21 (8-9), 1135—1139 (1998).
30. Roblin G., Fleurat-Lessard P., Bonmort J. Effects of compounds affecting calcium channels on phytochrome- and blue pigment-mediated pulvinar movements of Cassia fasciculata. Plant Physiol., 90 (2), 697—701 (1989).
31. Sack F. D. Plant Gravity Sensing. Int. Rev. Cytol., 127, 193—252 (1991).
32. Sack F. D. Plastids and gravitropic sensing. Planta, 203, 63—68 (1997).
33. Schwuchow J. M., Kim D., Sack F. D. Caulonemal gravitropism and amyloplast sedimentation in the moss Funaria. Can. J. Bot., 73, 1029—1035 (1995).
34. Sytnik K. M., Demkiv O. T., Kordyum E. L., et al. Calcium gradient in plant cells with polarized growth in simulated microgravity. Adv. Space Res., 9 (11), P. (11)41 —(11)44 (1989).

35. Young J. C., Sack F. D. Time lapse analysis of gravitropism in Ceratodon protonemata. Amer. J. Bot., 79, 1348—1358 (1992).