Deterioration of radio signals and distortion of spacecraft radar characteristics by plasma jets from electric propulsion engines

1Shuvalov, VA, 2Bystritskii, MG, 2Churilov, AE
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 1999, 5 ;(2):81–92
https://doi.org/10.15407/knit1999.02.081
Publication Language: Russian
Abstract: 
We formulated the principles and developed the methods of the physical modelling of electromagnetic wave scattering on plasma jets and formations created at spacecraft surfaces. We studied experimentally the deterioration of radio signals and distortion of the radar characteristics of spacecraft design elements by the plasma jets and artificial plasma formations arising during the work of electric propulsion engines, the injection of electron beams, and in the course of various active and passive tests on the orbit.
Keywords: electric propulsion engines, electromagnetic wave scattering, plasma jets
References: 
1. Avdyushin S. I., Podgorny I. M., Popov H. A., et al. Use of plasma accelerators for study of physical processes in space. In: Plasma Accelerators and Ion Injectors, 232—250 (Nauka, Moscow, 1984) [in Russian].
2. Aleksandrov A. F., Rukhadze A. A., Bogdankevich L. S. Principles of Plasma Electrodynamics, 407 p. (Vysshaya Shkola, Moscow, 1978) [in Russian].
3. Vasil’ev E. N. Excitation of Bodies of Rotation, 272 p. (Radio i Svyaz’, Moscow, 1987) [in Russian].
4. Voitsekhovich P. V., Garkusha V. I., Veselovzorov A. N., et al. Investigation of Impulsive Accelerators of Plasma under Space Conditions. Kosm. Issled., 14 (3), 445—453 (1976) [in Russian].
5. Gekker I. R. Interaction of strong electromagnetic fields with a plasma, 312 p. (Atomizdat, Moscow, 1978) [In Russian].
6. Gil’denburg V. B., Zhidko Yu. M., Kondrat’ev Yu. G., Miller M. A. Some Problems of Diffraction of Electromagnetic Waves on Plasma Structures. Izv. Vyssh. Uchebn. Zaved., Radiofiz., 10 (9-10), 1358—1375 (1967) [in Russian].
7. Ginzburg V. L. Propagation of Electromagnetic Waves in Plasma, 683 p. (Nauka, Moscow, 1967) [in Russian].
8. Golant V. E., Piliya A. D. Linear transformation and absorption of waves in a Plasma. Uspekhi fiz. nauk, 104 (3), 413—457 (1971) [in Russian].
9. Grishin S. D., Leskov L. V. Electric Rocket Engines of Spacecraft, 216 p. (Mashinostroenie, Moscow, 1989) [in Russian].
10. Gurevich A. V., Shvartsburg A. B. Nonlinear theory of propagation of radio waves in the ionosphere, 272 p. (Nauka, Moscow, 1973) [in Russian].
11. Dokukin V. S., Zhulin I. A., Kolomiets A. R., et al. Two-frequency radar observations in the Zarnitsa-2 experiment. Geomagnetizm i Aeronomiia, 22 (1), 70—74 (1982) [In Russian].
12. Zhidko Yu. M. Back-scatter cross sections of dielectric bodies which are nonuniform along the radius and the angular coordinate. Izv. vuzov. Radiofizika, 11 (6), 876—882 (1968) [in Russian].
13. Zaboronkova T. M., Kondrat'ev I. G. Application of the Lorentz Lemma to the Calculation of the Excitation Coefficient of Diffraction Modes. Izv. vuzov. Radiofizika, 15 (12), 1894—1904 (1972) [in Russian].
14. Kadomtsev B. B. Collective Phenomena in Plasma, 238 p. (Nauka, Moscow, 1976) [in Russian].
15. Kobak V. O. Radar Reflectors, 248 p. (Sov. Radio, Moscow, 1976) [in Russian].
16. Kozlov S. I., Smirnova N. V. Methods and means of creating artificial formations in the circumterrestrial medium and estimation of the characteristics of arising perturbations. I - Methods and means of creating artificial formations. Kosmicheskie Issledovaniia, 30 (4), 495—523 [in Russian].
17. Kolychev S. A., Iarygin A. P. Rigorous solution to the scalar problem of plane-wave diffraction by extended two-dimensionally inhomogeneous plasma formations containing a metallic sphere or cylinder. Radiotekhnika i Elektronika, 29 (1), 5—11 (1984) [in Russian].
18. Kuvaev V. M. Scattering of electromagnetic waves from bodies covered by a thin plasma layer. Radiotekhnika i Elektronika, 26 (5), 1097—1100 (1981) [in Russian].
19. Lenert B. Space Plasma and laboratory scales. In: Plasma physics and magnetohydrodynamics, 65—134 (Izd-vo inostr. lit., Moscow, 1961) [in Russian].
20. Lisov I. Russia-USA: An Active Geophysical Rocket Experiment. Novosti Kosmonavtiki, 7 (5), 64—65 (1997) [in Russian].
21. Maizels I. N., Torgovanov V. A. Dispersion characteristics measurement of the radar-tracking, 232 p. (Nauka, Moscow, 1968) [in Russian].
22. Massey H. S. W., Burhop E. H. S. Electronic and ionic impact phenomena. 567 p. (Izd-vo inostr. lit., Moscow, 1958) [in Russian].
23. Mitsmakher M. Iu., Torgovanov V. A. Microwave anechoic chambers, 392 p. (Radio i Sviaz', Moscow, 1982) [in Russian].
24. Moisia R. I., Sliusarenko I. I., Kolomiets A. R., et al. Radar observations of an intense plasma beam in the ionosphere (the Aelita-1 experiment). Problemy Kosmicheskoi Fiziki, no. 17, 63—70 (1982) [in Russian].
 25. Pereverzev S. I., Ufimtsev P. Ia. The reflection of electromagnetic waves from metallic bodies in a plasma. Radiotekhnika i Elektronika, 21 (7), 1369—1379 (1976) [in Russian].
26. Permyakov V. A. Diffraction of electromagnetic waves by a radially inhomogeneous plasma sphere and cylinder. Izv. vuzov. Radiofizika, 11 (4), 531—542 (1968) [in Russian].
27. Permyakov V. A. Singularities of the backscattering of electromagnetic waves by a metal sphere coated with a radially inhomogeneous plasma sheath. Izv. vuzov. Radiofizika, 19 (10), 1556—1559 (1976) [in Russian].
28. Permiakov V. A. Diffraction effects in the backscattering of electromagnetic waves by a radially inhomogeneous plasma sphere. Izv. vuzov. Radiofizika, 23 (9), 1075—1084 (1980) [in Russian].
29. Sutton G. W., Sherman A. Engineering Magnetohydrodynamics, 492 p. (Mir, Moscow, 1968) [in Russian].
30. Silin V. P. Parametric Effects of High-Power Radiation on a Plasma, 288 p. (Nauka, Moscow, 1973) [in Russian].
31. Heald M. A., Wharton C. B. Plasma diagnostics with microwaves, 392 p. (Atomizdat, Moscow, 1968) [in Russian].
32. Shuvalov V. A. Structure of the near wake behind a sphere in an inequilibrium low-density plasma stream. Geomagnetizm i Aeronomiia, 19 (4), p. 651—656 (1979) [In Russian].
33. Shuvalov V. A., Bystritskii M. G., and Churilov A. E. Influence of the Structure of a Disturbed Zone around a Body in the Rarefied Plasma Flow on Scattering of Electromagnetic
Waves. Zhurnal Tekhnicheskoi Fiziki, 51 (2), 310—315 (1981) [In Russian].
34. Shuvalov V. A., Gubin V. V. Distribution of Charged Particles around a Body in the Plasma Flow at Injection of Neutral Gas. Fiz. Plazmy7 (3), 689—693 (1981) [In Russian].
35. Yarygin A. P. Effective Surface of Scattering of Axially-Symmetric Plasma Structures in the Direction of Their Axes of Rotation. Radiotekh. Electron., 14 (5), 912—915 (1969) [In Russian].
36. Alexopoulos N. G. High-frequency backscattering from a per­fectly conducting sphere coated with a radially inhomogeneous dielectric. Radio Sci., 6 (10), 893—901 (1971).
37. Borisov B. S., Garkusha V. I., Kozyrev N. V. at al. The influence of electric thruster plasma plume on downlink com­munication in space experiments. AIAA Paper, N 91—2349, 11 p. (1991).
38. Bruning J. H., Lo V. Multiple scattering of EM waves by spheres. Part II. Numerical and experimental results. IEEE Transactions on antennas and propagation, AP—19, N 3, 391—400 (1971).
39. Charles G., Dokukin E. V., Mishin I. V., et al. Telemetry signal damping during rocket electron beam injection. Ann. Geophys., 36 (1), 397—400 (1980).
40. Grebnev J. A., Ivanov G.V., Khodnenko V. P., et al. The study of a plasma jet injected by an on-board plasma thruster. Adv. Space Res., 1 (2), 153—158 (1981).

41. Sagdeev R. Z., Managadze G. G., Martinson A. A., et al. Experiments with injection of powerful plasma jet into the ionosphere. Adv. Space Res., 1 (2), 127—140 (1981).